

[image: _images/Logo.png]

Welcome to the ClickPoints Documentation

Click Points is a program written in the Python programming language, which serves on the one hand as an image viewer
and on the other hand as an data display and annotation tool. Every frame can be annotated by a description, marked
points/tracks, or marked areas (paint brush). This helps to view image data, do manual evaluation of data, help to create
semi-automatic evaluation or display the results of automatic image evaluation.

Contents

	Installation
	Windows Installer

	Python Packages

	Developer Version

	Possible Errors

	General
	Zooming, Panning, Rotating

	Jumping frames

	Interfaces

	Tutorial
	Opening Files and Folders

	Using ConfigFiles

	Manual Tracking

	Taking Measurements

	Modules
	Timeline

	GammaCorrection

	VideoExporter

	Annotations

	Marker

	Mask

	Info Hud

	Add-ons
	Tracking

	Fluorescence Diffusion

	Drift Correction

	Cell Detector

	Grab Plot Data

	Examples
	Count Animals

	Flourescence intensities in plant roots

	Bead Tracking

	Simulation Visualisation

	Database API
	Database Models

	DataFile

	Add-on API
	Meta Data File

	Script File

	Defining Options

	Events

	Commands

Note

If you encounter any bugs or unexpected behaviour, you are encouraged to report a bug in our
Bitbucket bugtracker [https://bitbucket.org/fabry_biophysics/clickpoints/issues?status=new&status=open].

Citing ClickPoints

If you use ClickPoints for academic research, you are highly encouraged (though not
required) to cite the following paper:

	Gerum, R., Richter, S., Fabry, B. and Zitterbart, D.P. (2016),
“ClickPoints: an expandable toolbox for scientific image annotation and analysis” [http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12702/abstract].
Methods Ecol Evol. doi:10.1111/2041-210X.12702

ClickPoints is developed primarily by academics, and so citations matter a lot to
us. Citing ClickPoints also increases it’s exposure and potential user
(and developer) base, which is to the benefit of all users of ClickPoints. Thanks
in advance!

Who uses ClickPoints

Here is a list of publications that used ClickPoints for their evaluation.

	Bonakdar, N., Gerum, R. C., Kuhn, M., Spörrer, M., Lippert, A., Schneider, W., … Fabry, B. (2016). Mechanical plasticity of cells. Nature Materials, 15(10), 1090–1094. https://doi.org/10.1038/nmat4689

	Braniš, J., Pataki, C., Spörrer, M., Gerum, R. C., Mainka, A., Cermak, V., … Rosel, D. (2017). The role of focal adhesion anchoring domains of CAS in mechanotransduction. Scientific Reports, 7. https://doi.org/10.1038/srep46233

	Gerum, R. C., Richter, S., Winterl, A., Fabry, B., & Zitterbart, D. P. (2017). CameraTransform: a Scientific Python Package for Perspective Camera Corrections. ArXiv http://arxiv.org/abs/1712.07438

	Richter, S., Gerum, R., Schneider, W., Fabry, B., Le Bohec, C., & Zitterbart, D. P. (2018). A remote-controlled observatory for behavioural and ecological research: A case study on emperor penguins. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12971

	Gerum, R., Richter, S., Fabry, B., Le Bohec, C., Bonadonna, F., Nesterova, A., Zitterbart, D. (2018). Structural organisation and dynamics in kin penguin colonies, Journal of Physics D: Applied Physics, 51(16), 164004. https://doi.org/10.1088/1361-6463/AAB46B

	Richter, S., Gerum, R., Winterl, A., Houstin, A., Seifert, M., Peschel1, J., Fabry, B., Le Bohec, C., Zitterbart, D.P., (2018). Phase transitions in huddling emperor penguin colonies, Journal of Physics D, 51(21), 214002. https://doi.org/10.1088/1361-6463/aabb8e

	Gerlitz, N., Gerum, R., Sauer, N., Stadler, R. (2018). Photoinducible DRONPA-s: a new tool to investigate cell-cell connectivity, The Plant Journal, https://doi.org/10.1111/tpj.13918

	Pârvulescu, L. (2019). Introducing a new Austropotamobius crayfish species (Crustacea, Decapoda, Astacidae): A Miocene endemism of the Apuseni Mountains, Romania, Zoologischer Anzeiger, 279, 94–102. https://doi.org/10.1016/j.jcz.2019.01.006

	Cóndor, M., Mark, C., Gerum, R. C., Grummel, N. C., Bauer, A., García-Aznar, J. M., & Fabry, B. (2019). Breast cancer cells adapt contractile forces to overcome steric hindrance, Biophysical Journal. https://doi.org/10.1016/j.bpj.2019.02.029

Installation

ClickPoints can be installed in different ways, you can choose the one which is the most comfortable for you and the
operating system you are using.

Windows Installer

If you have no Python installation and just want to get started, our installer is the best option for you. Just download
and execute the following installer:

Download: ClickPoints Installer [https://bitbucket.org/fabry_biophysics/clickpoints/downloads/ClickPoints.exe]

This will install the miniconda environment, if it is not already installed and download the clickpoints conda package.

Note

ClickPoints will be by default installed in a new conda environment called _app_own_environment_clickpoints.

Python Packages

If you are already familiar with python and have a python installation, you can choose one of the following ways:

	If you are in a conda env: conda install -c conda-forge -c rgerum clickpoints (recomended)

	If you have pip: pip install clickpoints

	Or with python setup.py install

We recommend the conda installation, as this should always be the newest version of ClickPoints.

If you want to register clickpoints for the typical file extensions, e.g. add it to the right click menu, execute

clickpoints register

If you want to remove it again, call

clickpoints unregister

Developer Version

If you want to have ClickPoints installed from the repository and be able to update to the newest changesets, you can
follow this guide. First of all you need to have mercurial installed (Mercurial [https://www.mercurial-scm.org/]).
Then you can open a command line in the folder where you want to install ClickPoints (e.g. C:Software) and run the following command:

hg clone https://bitbucket.org/fabry_biophysics/clickpoints

To install the package with all dendencies, go to the folder where ClickPoints has been downloaded (e.g. C:Softwareclickpoints) and execute:

python install_requirements_with_conda.py

in the downloaded repository directory. Then execute the command

clickpoints register

which will add clickpoints to the right click menu in the file explorer.

Possible Errors

Here is a short list of possible error messages after installation and how they can be fixed.

This application failed to start because it could not find or load the Qt platform plugin "windows" in "".

reinstall pyqt5 with pip install pyqt5.

General

Once ClickPoints has been installed it can be started directly from the Start Menu/Program launcher.

This will open ClickPoints with an empty project.

Images can be added to the project by using [image: the folder button].

The project can be saved by clicking on [image: the save button].

ClickPoints can also be used to directly open images, videos or folder by right clicking on them, which will open an
unsaved project which already contains some images. This way ClickPoints functions as an image viewing tool.

ClickPoints can be opened with various files as target:

	an image, loading all images in the folder of the target image.

	a video file, loading only this video.

	a folder, loading all image and video files of the folder and its sub folders, which are concatenated to one single image stream.

	a previously saved .cdb ClickPoints Project file, loading the project as it was saved.

Pressing Esc closes ClickPoints.

To easily access marker, masks, track or other information, stored in the .cdb ClickPoints Project file,
we provide a python based API

Attention

If you plan to evaluate your data set or continue working on the same data set you must save the project -
otherwise all changes will be lost upon closing the program. If a project was saved, all changes are saved
automatically upon frame change or by pressing S

Zooming, Panning, Rotating

ClickPoints opens with a display of the current image fit to the window. The display can be

	zoomed, using the mouse wheel

	panned, holding down the right mouse button

	rotated using R.

To fit the image into the window press F and switch to full screen mode by pressing W.

Note

Default rotation on startup or and rotation steps with each press of R can be defined in the
ConfigClickPoints.txt with the entries rotation = and rotation_steps =.

Jumping frames

ClickPoints provides various options to change the current frame.

	The keys Left and Right go to the previous or next frame.

	The keys Home and End jump to the first or last frame.

	Click or Drag & Drop the timeline slider

Key pairs on the numpad allow for jumps of speciefied

	Numpad 2, Numpad 3: -/+ 1

	Numpad 5, Numpad 6: -/+ 10

	Numpad 8, Numpad 9: -/+ 100

	Numpad /, Numpad *: -/+ 1000

Be sure to have the numpad activated, or the keys won’t work.

Note

The step size of the jump keys can be redefined by the jumps = variable in the ConfigClickPoints.txt

For continuous playback of frames see timeline module.

Interfaces

The interfaces for Marker, Mask and GammaCorretion can be shown/hidden
pressing F2.

Tutorial

The recipes section contains some basic usage examples on how to get started using ClickPoints
and explains different ways for different tasks.

List of Tutorials

	Opening Files and Folders
	via Interface

	via Context Menu

	via Commandline Parameter

	via .txt File

	Using ConfigFiles
	Scope

	Manual Tracking
	Getting started

	Taking Measurements

Opening Files and Folders

ClickPoints was designed with multiple usage keys in mind, and therefore provides multiple ways to open files.

Attention

Opening a set of files for the first time can take some time to extract time and meta information
from the filename, TIFF or EXIF header. For large collections of files it is recommended to save the collection
as a project and use the .cdb file for starting ClickPoints. Saving time as no file system search is necessary
and all meta information is already stored in the .cdb

via Interface

ClickPoints can be started empty by using a desktop link or calling ClickPoints.bat from CMD (Windows),
or respectively ClickPoints from a terminal (Linux).

Images can be added by using [image: the folder button].

via Context Menu

A fast and comfortable way to open files and folders with ClickPoints is the context menu.

ClickPoints can be opened with various files as target:

	an image, loading all images in the folder of the target image.

	a video file, loading only this video.

	a folder, loading all image and video files of the folder and its sub folders, which are concatenated to one single image stream.

	a previously saved .cdb ClickPoints Project file, loading the project as it was saved.

via Commandline Parameter

ClickPoints can be run directly from the commandline, e.g. to open the files in the current or a specific folder

ClickPoints "C:\Images"

or

python ClickPoints.py -srcfile="C:\Images"

Note

To use the short version of calling ClickPoints without the path, you have to add ClickPoints base path to
the systems or users PATH variable (Windows) or create an alias (Linux).

via .txt File

Furthermore it is possible to supply a text file where each line contains the path to an image or video file.
This is useful e.g. to open a fixed set of files, a list of files extract by another application or a database interface.

ClickPoints "sample.txt"

sample.txt

	1
2
3

	 20120919_colonydensity.gif # relativ path (to txt file)
 C:\Users\Desktop\images\20160601-141408_GE4000.jpg # absolut path
 \\192.168.0.99\2014\20140323\03\20140323-030151_31n2.JPG # network path

Note

It is possible to open files over the network e.g. via samba shares.
On Linux systems it is necessary do mount the network drive first!

Using ConfigFiles

The config file contains parameters to adjust ClickPoints to the users needs,
adjusts default behaviour or configure key bindings. A GUI is available to
set parameters during runtime, the ConfigFile is used to set default behaviour.

Scope

Config files in ClickPoints are designed to optimize the work flow.
Upon opening a file the path structure is searched for the first occurrence of a valid config file.
Thereby allowing the user to specify default for files grouped in one location.

If no config file is found, the default config values as set in click points base path are used (green).
A config file located in the path “research” (blue) will overwrite these values and is used for files opened in child paths.
Allowing the user to define a preferred setup. In addition we can add a second config file lower in the path tree to specify
a specific setup for all files that were stored under “Experiment_3”. This can contain a set of default marker names,
which features to use or which add-ons to include.

[image: ConfigFile scope]
Scope of ConfigFiles

Note

A graphical user interface to view and change config values is available too.

Manual Tracking

This tutorial gives a shot introduction how to get started manually labeling your own tracks,
for a quick evaluation or ground truths for the evaluation of automated algorithms.

Getting started

1. Open the image sequence or video(s) in ClickPoints

For example: right click on the folder containing your images and select ClickPoints on the context menue

2. Save the project

Marked results and correlated images must be stored some where, there for the project hast to be named and saved.
Click on the save button [image: the save button] and select a storage location and file name.

Note

Reference to images and video is stored relative as long a the files reside parallel or below in the path tree.
If the files reside above or on a different branch, drive, or network location, the absolute path is stored.

3. Define Marker types

Before we can get started we have to specify a marker type. Marker types are like classes of objects, e.g. we might use
a class for birds and another one for ships. Every marker type can have multible tracks.

To open the marker menu either press F2 or click on the Marker button [image: the marker button] to switch to edit mode (Fig. A).
Then right click onto the marker list to open the marker menu (Fig. B). You can reuse the default marker or create a new marker
by selecting + add type. Choose a name and color for your new marker type and make sure to set the type to TYPE_track.
Confirm your changes by pressing save.
To add more tracking types select + add type and repeat the procedure.

[image: Defining a marker for tracking]
Figure 1 | Defining a marker for tracking

4. Navigating the dataset

	Navigating the current frame:

right mouse button (hold) - to pan the image

mouse wheel - zoom the image

F - fit to view

W - full screen mode

H - hide time line

See General

	Navigating the dataset:

left & right cursor keys to go one frame forward and backward

	Jump a specified set of frames with the numbad keys. See Jumping Frames

	Use the frame and time navigation slider to by clicking or dragging the cursor to the desired position.

	Jump to a specific frame by clicking on the frame counter and entering the desired frame number

	Press [image: the play icon] to play the dataset with the specifed frame rate or as fast as feasible.

Note

Due to the sequential compression of videos, traversing a video backwards is computational expensive. ClickPoints provides a
buffer so that the last N frames are stored and can be retrieved without any further computational cost. The default buffer size
can be specified in the config.

Warning

Be careful not to reserve too much RAM for the frame buffer as it will drastically reduce performance!

5. Basic Tracking Procedure

The setup steps are completed, we can begin to mark some tracks.

	Activite the type of marker you want to use by clicking on the label “bird” or press the associated number key.

	Set the first marker by clicking on the image.

	Switch to the next frame using the right cursor key.

	The track now shows up with reduced opacity, indicating there is no marker for the current frame.

	Upon dragging the marker (left click & hold) to the current position (release) a line indicates the connection to the last position. The track shows up with full opacity again.

	If a frame is skipped, the marker can be dragged as usual but no connecting line will appear. Indicating a fragmentation of the track.

	To create a second track, repeat step 1.

	Markers are automatically save upon frame change or by pressing the S key.

[image: Track states]
Figure 2 | Track States

A - Track without update in current frame B - Track with update in current frame C - Track with missing marker

6. “Connect-nearest” Tracking Mode

For low density tracks ClickPoints provides the “connect nearest” mode. Clicking on the image will automatically connect
the new marker to the closest Track in the last frame. Speeding up tracking for low track density scenes. The dragging of
markers is still support and is usefull for intersecting tracks.

To activate “connect nearest” mode, set the config parameter tracking_connect_nearest = True.

See ConfigFiles for more details.

7. Important Controls

A list of useful controls for labeling tracks. Connect-nearest mode extends the list of default controls

	
	default

	left click - create new track (default mode)
ctrl + left click - remove marker
right click - open marker menu, see XXXXX

	
	connect-nearest mode

	left click - place marker, autoconnect to nearest track
alt + left click - create new track
shift + left click - place marker & load next frame

8. Advances Options

	Use SmartText to display additional information

See SmartText

	Example:

	Display Track IDs

	open the marker menu

	navigate to “bird” marker type

	edit the text field by inserting

$track_id

All current markers of the type bird now display their internal track ID

[image: Tracks with SmartText ID]
Figure 3 | Tracks with SmartText ID

	Use Styles to modify the display of markers and tracks

See Marker Styles

	Example:

	Change track point display

	open the marker menu

	navigate to “bird” marker type

	edit the style field by inserting

{"track-line-style": "dash", "track-point-shape": "none"}

All tracks of the type bird now are displayed with dashed lines and without track points

[image: Tracks with modified style]
Figure 3 | Tracks with modified style

Taking Measurements

How to perform quick measurements with ClickPoints and SmartText Markers

Modules

The modules are the different functions of the ClickPoints program. They can be accessed by the icons in the upper panel.

[image: Icon Panel]
The icon panel where all modules can be accessed.

List of Modules

	Timeline

	GammaCorrection

	VideoExporter

	Annotations

	Marker

	Mask

	Info Hud

Timeline

ClickPoints provides two timelines for navigation, a frame based and a timestamp based timeline. The frame based timeline
is used by default, the timestamp timeline can be activated if time information of the displayed files is available.
Time information extraction is implemented for the filename, the EXIF or TIFF headers.

Frame Timeline

[image: Timeline Example]
Frame Timeline example showing tick marks for marker and annotations.

The timeline is an interface at the bottom of the screen which displays range of currently loaded frames and allows for
navigation through these frames. It can be displayed by clicking on [image: the play icon].

To start/stop playback use the playback button at the left of the timeline or press Space. The label next to
it displays which frame is currently displayed and how many frames the frame list has in total.
The time bar has one slider to denote the currently selected frame and two triangular marker to select start and
end frame of the playback. The keys b and n set the start/end marker to the current frame.
The two tick boxes at the right contain the current frame rate and the number of frames to skip during playback
between each frame.
To go directly to a desired frame simply click on the frame display (left) and enter the frame number.

Each frame which has selected marker or masks is marked with a green tick mark (see Marker and
Mask) and each frame marked with an annotation (see Annotations) is marked with a
red tick. To jump to the next annotated frame press Ctrl+Left or Ctrl+Right.

Config Parameter

	
	fps = (int, value >= 0)

	if not 0 overwrite the frame rate of the video

	
	play_start = (float)

	
	> 1: at which frame to start playback at what

	0 > value < 1: fraction of the video to start playback

	
	play_end =

	
	> 1: at which frame to start playback at what

	0 > value < 1: fraction of the video to start playback

	
	playing = (bool)

	whether to start playback at the program start

	
	timeline_hide = (bool)

	whether to hide the timeline at the program start

Keys

	H - hide control elements

	Space - run/pause

	Crtl + Left - previous image with marker or annotation

	Ctrl + Right - nextimage with marker or annotation

Date Timeline

[image: Date Timeline Example]
Date Timeline example

The date timeline displays the timestamps of the loaded data set.
To navigate to desired time point simply drag the current position marker or click on the point on the date timeline.
The timeline can be panned and zoomed by holding the left mouse button (pan) und the mouse wheel (zoom).
It aims to make it easier to get an idea of the time distribution of the data set,
to find sections of missing data and facilitate navigation by a more meaningful metric than frames.

The extraction of timestamps by filename is fast than by EXIF. If you plan to repeatedly open files, without using
a .cdb to store the time stamps, renaming them once might be beneficial.
A list of timestamp search strings can be specified in the confing file as shown in the code example below. As the
search will be canceled after the first match it is necessary to order the the search strings by decreasing complexity.

Recommended naming template: %Y%m%d-%H%M%S-%f_Location_Camera.type

Config Parameter

	
	datetimeline_show = (bool)

	enable or disable the date timeline by setting this value to True or False

	
	timestamp_formats = (list of strings)

	list of match strings for images, with decreasing complexity

	
	timestamp_formats2 = (list of strings)

	
list of match strings for videos with 2 timestamps, with decreasing complexity

default values:
for image formats with 1 timestamp
timestamp_formats = [r'%Y%m%d-%H%M%S-%f', # e.g. 20160531-120011-2 with fraction of second
 r'%Y%m%d-%H%M%S'] # e.g. 20160531-120011
for video formats with 2 timestamps (start & end)
timestamp_formats2 = [r'%Y%m%d-%H%M%S_%Y%m%d-%H%M%S']

GammaCorrection

[image: Gamma Example]
An example gamma correction.

The gamma correction is a slider box in the right bottom corner which allows to change the brightness and gamma of the
currently displayed image. It can be opened by clicking on [image: the adjust icon].

The box in the bottom right corner shows the current gamma and brightness adjustment. Moving a slider changes the
display of the currently selected region in the images. The background of the box displays a histogram of brightness
values of the current image region and a red line denoting the histogram transform given by the gamma and brightness
adjustment. Pressing update the key G sets the currently visible region of the image as the active region for
the adjustment. Especially for large images it increases performance significantly if only a portion of the
image is adjusted. A click on reset resets gamma and brightness adjustments.

Gamma

[image: Gamma Change]
The same image for different gamma values or 1, 0.5 and 1.5.

The gamma value changes how bright and dark regions of the images are
treated. A low gamma value (<1) brightens the dark regions up while
leaving the bright regions as they are. A high gamma value (>1) darkens
the dark regions of the image while leaving the bright regions as they
are.

Brightness

[image: Brightness Change]
The same image for different brightness values, where once the lower and once the upper range was adjusted.

The brightness can be adjusted by selecting the Max and Min values.
Increasing the Min value darkens the image by setting the Min value (and
everything below) to zero intensity. Decreasing the Max value brightens
the image by setting the Max value (and everything above) to maximum
intensity.

Keys

	G: update rect

VideoExporter

The video exporter allows for the export of parts of the currently loaded images as a video, image
sequence of gif file. It can be opened useing the [image: the video icon] or by pressing z. An dialog will open, which
allows to select an output filename for a video, an image sequence (which has to contain a %d number placeholder) or a
gif file. Frames are exported starting from the start marker in the timeline to the end marker in the timeline. The
framerate is also taken from the timeline. Images are cropped according to the current visible image part in the main window.

Keys

	Z: Export Video

Annotations

[image: Annotation Example]
An example of both the annotation editor and the annitation overview window.

Annotations are text comments which can include a rating and tags, which is attached to a frame. To annotate a frame or
edit the annotation of a frame press A or [image: the annotation icon] and fill in the information in the dialog. The
frame will be marked with a red tick in the timeline. To get a list of all annotated frames press Y.
In this list clicking an annotation results in a jump to the frame of the annotation.

Keys

	A: add/edit annotation

	Y: show annotation overview

Marker

[image: Marker Example]
An example image showing three different marker types and some markers placed on the image.

Marker are added to a frame to refer to pixel positions. Marker can have different types to mark different objects.
They can also be used in tracking mode to recognize an object over different frames.

The marker editor can be opened by clicking on [image: the marker icon].

The list of available markers is displayed at the top left corner. A marker type can be selected either by clicking on
its name or by pressing the corresponding number key. A left click in the image places a new marker of the currently
selected type. Existing markers can be dragged with the left mouse button and deleted by clicking on them while
holding the control key.

To save the markers press S or change to the next image, which automatically saves the current markers.

	MB1

	place a marker or track point at the current mouse position

	ctrl + MB1

	delete the marker under the mouse pointer

	MB2

	open the marker editor

Marker types

A right click on any marker or type opens the Marker Editor window. There types can be created, modified or deleted.

Marker types have a name, which is displayed in the HUD, a color and a mode.

[image: Marker Type Modes]
Different marker type modes.

TYPE_Normal results in single markers. TYPE_Rect joins every two consecutive markers as a rectangle. TYPE_Line joins
every two consecutive markers as a line. TYPE_Track specifies that this markers should use tracking mode (see section
Tracking Mode).

Marker display

Pressing T toggles between three different marker displays. If the smallest size is selected, the markers can’t be
moved. This makes it easier to work with a lot of markers on a small area.

[image: Marker Sizes]
The same marker in different size configurations.

Tracking mode

Often objects which occur in one image also occur in another image (e.g. the images are part of a video). Then it is
necessary to make a connection between the object in the first image and the object in the second image. Therefore
ClickPoints features a tracking mode, where markers can be associated between images. It can be enabled using the
TYPE_Track for a marker type. The following images displays the difference between normal mode (left) and tracking
mode (right):

[image: Marker Sizes]
The same marker in normal mode (left) and in tracking mode (right). The track always displays all previous positions
connected with a line, when they are from two consecutive images.

To start a track, mark the object in the first image. Then switch to the next image and the marker from the first image
will still be displayed but only half transparent. To add a second point to the track grab the marker and move it to the
new position of the object. Continue this process through the images where you want to track the object. If the object
didn’t move from the last frame or isn’t visible, an image can be left out, which results in a gap in the track. To
remove a point from the track, click it while holding control.

Marker Editor

The Marker Editor is used to manage marker types. New marker types can be created, existing ones can be modified or
deleted.

[image: The Marker Editor]
The Marker Editor used to create and change marker types, navigate to tracks and marks and delete marker,
tracks and types

	Creating Marker Types

	To create a new marker type open the marke editor via [image: the marker icon] or right click on the marker display or a marker.
Select the +add type field, enter a name, set the marker mode to marker, line, rectangle or track and choose a color.
Further modifications can be achieved via the text and style field, for more details see the following sections.

	Editing Marker Types

	To edit a marker type, simply select the type from the menu, chenges the desired values and save the changes by pressing Save

Note

It is NOT possible to change marker types as long as marker objects of this type exist. E.g. you can’t make lines out
of regular markers as they don’t have a second point.

	Navigation

	The editor can also be used to navigate. Selecting a marker will bring you to the frame the marker is placed in.
By clicking on the arrow in front of the type name the marker or track overview unfolds. Selecting a marker of a track
will bring you to the frame it is placed in.

	Deleting Types, Tracks and Markers

	Types, tracks and markers can be removed by selecting the object in the tree and pressing the Remove button.
By removing a marker type all markers and tracks of this type are removed, removing a track will remove all markers
of this track.

Warning

There is no undo button!

Marker Style Definitions

Style definitions can provide additional features to change the appearance of marker. They are inherited from the marker
type to the track and from the track to the marker itself. If no track is present the marker inherits its style
directly from the type. This allows to define type, track and marker specific styles.

Styles can be set using the Marker Editor (right click on any marker or type).

The styles use the JSON format for data storage. The following fields can be used:

	
	Marker Color - "color": "#FF0000"

	Defines the color of the marker in hex format.
Color can also be a matplotlib colormap followed optionally by a
number (e.g. jet(30)), then that many colors (default 100) are
extracted from the color map and used for the marker/tracks to color
every marker/track differently.

	
	Marker Shape - "shape": "cross"

	Defines the shape of the marker. All shapes can be converted to outlines by appending “-o” to the name.

values: cross (default), circle, ring, rect

	
	Marker Line Width - "line-width": 1

	Defines the line width of the markers symbol (e.g. width of the circle). Ignored if a filled symbol (e.g. the
cross) is used.

	
	Marker Scale - "scale": 1

	Scaling of the marker.

	
	Marker Transform - "transform": "screen"

	If the marker should have a fixed size with respect to the screen or the image.

values: screen (default), image

	
	Track Line Style - "track-line-style": "solid"

	The style of the line used to display the track history.

values: solid (default), dash, dot, dashdot, dashdotdot

	
	Track Line Width - "track-line-width": 2

	The line width of the line used to display the track history.

	
	Track Gap Line Style – "track-gap-line-style": dash

	The style of the line used to display gaps in the track history.

values: solid, dash (default), dot, dashdot, dashdotdot

	
	Track Gap Line Width – "track-gap-line-width": 2

	The line width of the line used to display gaps in the track history.

	
	Track Marker Shape - "track-point-shape": "circle"

	The marker shape used to display the track history.

values: circle, ring (default), rect, cross, none

	
	Track Marker Scale - "track-point-scale": 1

	The scaling of markers used to display the track history.

Style Examples:

{"color": "jet(30)"} # style for providing a marker type with 30 different colors
{"track-line-style": "dash", "track-point-shape": "none"} # change the track style

Marker Text & SmartText

The text field allows to attache text to marker, line, rectangle and track objects.
Text properties are inherited from the marker type to the track and from the track to the marker itself.
If no track is present the marker inherits its text directly from the type.
This allows to define type, track and marker specific texts.

Text can be set using the Marker Editor (right click on any marker or type).

ClickPoints provides a SmartText feature, enabling the display of self updating text in to display pre defined values.
SmartText keyword always start with a $ character.
The keywords are depending on the type for marker, as explained in the following overview:

	General

	
	\n

	insert a new line

	$marker_id

	inserts the id of the marker, line or rectangle object

	$x_pos

	inserts the x position of the marker, first marker of a line or top left marker of a rectangle

	$y_pos

	inserts the x position of the marker, first marker of a line or top left marker of a rectangle

	Line

	
	$length

	inserts the length of the line in pixel with 2 decimals.

	Rectangle

	
	$area

	inserts the area of the rectangle in pixel with 2 decimals.

	Track

	
	$track_id

	inserts the track id of the track.

Text Examples:

regular Text
Marker: "Hello World!" # shows the text Hello World!

SmartText
Track: "ID_$track_id" # shows the track ID
Line: "$x_pos | $y_pos \n$length px" # shows the x & y coordinate and length
Rect: "ID_$marker_id\n$x_pos | $y_pos \n$area px²" # shows the object_id, its x & y coordinate and area

[image: Using the Marker Text and SmartText feature]
Using regular text and SmartText features for lines, rectangles and tracks

Mask

[image: Mask Example]
An image where 7 regions have been marked with different masks.

A mask can be painted to mark regions in the image with a paint brush. The mask editor can be opened by clicking on
[image: the mask icon].

A list of available mask colors is displayed in the top right corner. Switching to paint mode can be done using the key
P, pressing it again switches back to marker mode. Colors can be selected by clicking on its name or pressing the
corresponding number key. Holding the left mouse button down draws a line in the mask using the selected color. To
save the mask press S or change to the next image, which automatically saves the current mask.
The mask type delete acts as an eraser and allows to remove labeled regions.

Define colors

A right click on a color name opens the mask editor menu, which allows the creation, modification and deletion of mask
types. Every mask type consists of a name and a color.

Brush size

The brush radius can be de- and increased using the keys - and +.

Color picker

The color can alternatively to selection via number buttons or a click on the names be selected by using K to select
the color which is currently below the cursor.

Mask transparency

The transparency of the mask can be adjusted with the keys I and O.

Mask update

Updating masks can be slow if the images are very large. To enable fast painting of large masks, ClickPoints can disable
the automatic updates of the mask by disabling the option Auto Mask Update. If automatic updates are disabled
the key M redraws the currently displayed mask.

Config Parameter

	auto_mask_update = whether to update the mask display after each stroke or manually by key press

	draw_types = [[0,[255,0,0]] specifies what categories to use for
mask drawing. Every category is an array with two entries: index and color.

Keys

	0-9: change brush type

	K: pick color of brush

	-: decrease brush radius

	+: increase brush radius

	O: increase mask transparency

	I: decrease mask transparency

	M: redraw the mask

Info Hud

[image: the info hud]
Example of the info hud displaying time and exposure exif data from a jpg file.

This info hud can display additional information for each image. Information can be obtained from the filename, jpeg exif
information or tiff metadata or be provided by an external script.

The text can be set using the options dialog. Placeholders for additional information are written with curly brackets {}.
The keyword from the source (regex, exif or meta) is followed by the name of the information in brackets [], e.g.
{exif[rating]}. If the text is set to @script the info hud can be filled using an external script.
Use \n to start a new line.

To extract data from the filename a regular expression with named fields has to be provided.

Examples

Data from filename

file: "penguins_5min.jpg"

Info Text: "Animal: {regex[animal]} Time: {regex[time]}"
Filename Regex: '(?P<animal>.+?[^_])_(?P<time>.+)min'

Output: "Animal: penguin Time: 5"

Data from exif

file: "P1000236.jpg"

Info Text: "Recording Time: {exif[DateTime]} Exposure: {exif[ExposureTime]}"

Output: "Recording Time: 2016:09:13 10:31:13 Exposure: (10, 2360)"

The keys can be any field of the jpeg exif header as e.g. shown at http://www.exiv2.org/tags.html

Data from meta

file: "20160913_134103.tif"

Info Text: "Magnification: {meta[magnification]} PixelSize: {meta[pixelsize]}"

Output: "Magnification: 10 PixelSize: 6.45"

The values presented in the meta field of tiff files varies by the tiff writer. ClickPoints can only access tiff meta data
written in the json format in the tiff meta header field, as done by the tifffile python package.

Add-ons

Add-ons are helpful scripts which are not part of the main ClickPoints program, but can be loaded on demand to do some evaluation task.

They can be loaded by clicking on [image: the script icon] and selecting the add-on from the list. ClickPoints already comes
with a couple of add-ons, but it is easy to add your own or extend existing ones.

Each add-on will be assigned to a key from F12 downwards (F12, F11, F10 and so on) and a button will
appear for each add-on next to [image: the script icon]. Hitting the key or pressing the button will start the run function
of the add-on in a separate thread, or tell the thread to stop if it is already running.

To configure ClickPoints to already have scripts loaded on startup, you can define them in the ConfigClickPoints.txt
file as launch_scripts =.

For writing your own add-ons please refer to the add-on api.

List of Addons

	Tracking

	Fluorescence Diffusion
	1. Add the add-on

	2. Create a mask-type for each cell

	3. Paint the cell area for each cell in each image

	4. Specify the links between cells

	5. Specify the time between two images

	6. Specify which image channel to use

	7. Calculate Intensities

	8. Calculate Diffusion

	Drift Correction

	Cell Detector

	Grab Plot Data

Tracking

[image: Example of the tracking addon]

This add-on takes markers in one image and tries to find the corresponding image parts in the subsequent images.

To use it, open a ClickPoints session and add the add-on Track.py by clicking on [image: the script icon].

Create a marker type with mode TYPE_Track. Mark every object which should be tracked with a marker of this type. Then hit F12 (or the button you
assigned the Track.py to) and watch the objects to be tracked. You can at any point hit the key again to stop the tracking.
If the tracker has made errors, you can move the marker by hand and restart the tracking from the new position.

The algorithm uses the position using a sparse iterative Lucas-Kanade optical flow algorithm [bouguet2001pyramidal].

Attention

If the markers are not in a TYPE_Tracking type, they are not tracked by Track.py. Also maker which already have
been tracked are only tracked again, if they were moved in ClickPoints.

References

Fluorescence Diffusion

[image: Example of the fluorescence addon]

This add-on implements diffusion of florescence proteins between adjacent cells.

The add-on can be used as follows:

	add the add-on “Fluorescence Diffusion”

	create a mask-type for each cell (see module Mask on creating mask-types)

	paint the cell area for each cell in each image

	add line marker of the type “connect” to mark between which cells diffusion is allowed. (Only necessary for the first image)

	specify the “Delta T”, the time between two images

	specify the image channel to use (0: Red, 1: Green, 2: Blue)

	click on “Calculate Intensities” to obtain the intensity values for the masked regions

	click on “Calculate Diffusion” to obtain the diffusion values for the links

1. Add the add-on

Open a ClickPoints session and add the add-on Fluorescence Diffusion by clicking on [image: the add-on icon].

2. Create a mask-type for each cell

Click on [image: the mask icon] and select the button “+ add type” to add a mask type for each cell.

3. Paint the cell area for each cell in each image

Click on the paint brush and the name of the mask-type. Then paint the area of the cell in the image. Use the arrow keys
to navigate through the images and paint the cell in each image. From these regions the green image channel will be
summed as the total fluorescence intensity of the cell at this time.

Repeat this process for all images.

See also

For more information on the usage of masks, see the page on Masks.

4. Specify the links between cells

Click on the button “connect” on the left side of the window. Now click on one cell and drag the mouse to another cell
that should be connected to the first cell. Repeat this for all cells you want to link. Links indicate that diffusion
between these cells is allowed and a diffusion value will be fitted for this link later.

Links are only needed in one image of the sequence, not for all images.

See also

For more information on the usage of markers, see the page on Markers.

5. Specify the time between two images

Open the add-on by clicking on [image: the flask icon]. Add a value for “Delta T”, which specifies the time between two subsequent
images in seconds.

6. Specify which image channel to use

In the add-on window, specify the value “Color Channel”, which specifies which color channel to use: 0: Red, 1: Green, 2: Blue.

7. Calculate Intensities

Click in the button “Calculate Intensities”. The add-on sums all pixel intensity values for the regions covered by the masks.
The outputs can be seen in the table directly under the button. The graph right of the table shows the intensities over time.

8. Calculate Diffusion

Click on the button “Calculate Diffusion”. The add-on tries to find diffusion constants, so that the diffusion equation
describes the change of the fluorescence intensities in the cells. The resulting values are printed in the table under
the button and the simulated diffusion are shown in the graph right of the table.

Drift Correction

This add-on takes a region in the image and tries to find it in every image. The offset saved for every image to correct
for drift in the video.

To use it, open a ClickPoints session and add the add-on DriftCorrection.py by clicking on [image: the script icon].

When you first start the script a marker type named drift_rect is created. Use this type to select a region in the
image which remains stable over the course of the video. Start the drift correction script by using F12 (or the key
the script is connected to). The drift correction can be stopped and restarted at any time using the key again.

Cell Detector

[image: Example of the Cell Detector]
An image of cell nuclei before and after executing the Cell Detector addon.

This add-on is designed to take a microscope image of fluorescently labeled cell nucleii and find the coordinates of
every cell.

To use it, open a ClickPoints session and add the add-on CellDetector.py by clicking on [image: the script icon].

Start the cell detector script by using F12 (or the key the script is connected to). All found cell nucleii will
be labeled with a marker.

Attention

The Cell Detector won’t work for cells which are too densely clustered. But ClickPoints allows you to review and adjust
the results if some cells were not detected.

Grab Plot Data

[image: Example of the Grab Plot Data]
The two axis are marked with the corresponding markers and the data points with the data markers. The start and end
points of the axis are assigned a text containing the corresponding axis value.

This add-on helps to retrieve data from plots.

To use it, open a ClickPoints session and add the add-on GrabPlotData.py by clicking on [image: the script icon].

Sometimes it is useful to extract data from plotted results found in publications to compare them with own results or
simulations. ClickPoints therefore provides the add-on “GrabPlotData”. It uses three marker types. The types “x_axis” and
“y_axis” should be used to mark the beginning and end of the x and y axis of the plot. Markers should be assigned a text
containing the value which is associated with this point on the axis. These axis markers are used to remap the pixel
coordinates of the “data” markers to the values provided by the axis. These remapped values are stored in a “.txt” file
that has the same name as the image.

Attention

This can only be used if the axe is not scaled logarithmically. Only linear axes are supported.

Examples

The examples provide some usage examples of ClickPoints to demonstrate its various functionalities and how data can be
processed with ClickPoints and later easily evaluated with ClickPoints.

To kept the download size of ClickPoints down, the examples are kept in a separate repository. They can be downloaded
here [https://bitbucket.org/fabry_biophysics/clickpointsexamples/get/tip.zip].

List of Examples

	Count Animals

	Flourescence intensities in plant roots

	Bead Tracking

	Simulation Visualisation

Count Animals

[image: An example showing penguin counts]
Left: image of clickpoints to count penguins. Right: number of penguins counted.

In the example, we show how the ClickPoints can be used to count animals in an image.

The example contains some images recorded with a GoPro Hero 2 camera, located at the Baie du Marin King penguin colony on Possession Island of the Crozet Archipelago [Bohec137]. Two marker types, “adult” and “juvenile” where added in ClickPoints to count two types of animals.

The the counts can be evaluated using a small script.

Open the the database where the animals were clicked.
[2]:

%matplotlib inline
import matplotlib.pyplot as plt
import clickpoints

open database
db = clickpoints.DataFile("count.cdb")

path count.cdb
Open database with version 18

Iterave over the images using getImages() to get Image objects. Then query the Marker objects for each image and for the two marker types (see getMarkers())

[3]:

iterate over images
for index, image in enumerate(db.getImages()):
 # get count of adults in current image
 marker = db.getMarkers(image=image, type="adult")
 bar1 = plt.bar(index-0.15, marker.count(), color='C0', width=0.3)

 # get count of juveniles in current image
 marker = db.getMarkers(image=image, type="juvenile")
 bar2 = plt.bar(index+0.15, marker.count(), color='C1', width=0.3)

add labels
plt.ylabel("# of animals")
plt.xticks([0, 1, 2], ["image 1", "image 2", "image 3"])
add a lagend
plt.legend((bar1[0], bar2[0]), ("adult", "juvenile"))
display the plot
plt.show()

[image: ../_images/examples_example_count_6_0.png]

Now we want to plot an example image with the image and the markers as points in the image.
We can now use getImage() to get the first image of the sequence and load the data from this file. This can now be displayed with matplotlib. Then we use the image and type keyword of the getMarkers() function to filter out only markers from this image and the given type.

[4]:

get the first image
im_entry = db.getImage(0)

we load the pixel data from the Image database entry
im_pixel = im_entry.data

plot the image
plt.imshow(im_pixel, cmap="gray")

iterate over the adults in the image
for marker in db.getMarkers(image=im_entry, type="adult"):
 # plot the coordinates of the marker
 plt.plot(marker.x, marker.y, 'C0o', ms=2)

iterate over the juveniles in the iamge
for marker in db.getMarkers(image=im_entry, type="juvenile"):
 # plot the coordinates of the marker
 plt.plot(marker.x, marker.y, 'C1o', ms=2)

zoom into the image
plt.xlim(100, 2000)
plt.ylim(1200, 400)
plt.show()

[image: ../_images/examples_example_count_8_0.png]

References

	Bohec137

	Celine Le Bohec. Programme 137 ‘ecophy-antavia’ of the french polar institute paul-emile victor (ipev).

Flourescence intensities in plant roots

[image: A plant root with diffusing fluorescence proteins]
Left: image of a plant root in ClickPoints. Right: fluorescence intensities of the cells over time.

In the example, we show how the mask panting feature of ClickPoints can be used to evaluate fluorescence intensities in
microscope recordings.

Images of an Arabidopsis thaliana root tip, obtained using a two-photon confocal microscope [Gerlitz2016], recorded at
1 min time intervals are used. The plant roots expressed a photoactivatable green fluorescent protein, which after
activation with a UV pulse diffuses from the activated cells to the neighbouring cells.

For each time step a mask is painted to cover each cell in each time step.

The fluorescence intensities be evaluated using a python script.

Open the the database where the masks are painted:
[2]:

import re
import numpy as np
from matplotlib import pyplot as plt
import clickpoints

open the ClickPoints database
db = clickpoints.DataFile("plant_root.cdb")

path plant_root.cdb
Open database with version 18

Get a list of Image objects (getImages()) and a list of all MaskType objects (getMaskTypes()). Then we iterate over the images, load the green channel of the image (image.data[:, :, 1]) and get the mask data for that image (image.mask.data). The mask data is a numpy array with the same dimensions as the image having 0s for the background and the value mask_type.index for each pixel that belongs to the mask_type. Therefore we iterate over all the mask types and filter the pixels of the mask that belong to each type. This mask can then be used to filter the pixels of the green channel that belong to the MaskType.

[3]:

get images and mask_types
images = db.getImages()
mask_types = db.getMaskTypes()

regular expression to get time from filename
regex = re.compile(r".*(?P<experiment>\d*)-(?P<time>\d*)min")

initialize arrays for times and intensities
times = []
intensities = []

iterate over all images
for image in images:
 print("Image", image.filename)
 # get time from filename
 time = float(regex.match(image.filename).groupdict()["time"])
 times.append(time)

 # get mask and green channel of image
 mask = image.mask.data
 green_channel = image.data[:, :, 1]

 # iterate over the mask types
 intensity = []
 for mask_type in mask_types:
 # filter from the mask the current mask type
 mask_for_this_type = (mask == mask_type.index)
 # calculate the mean intenstiry of this cell in the green channel
 mean_intensitry_in_cell = np.mean(green_channel[mask_for_this_type])
 # and add it to the list
 intensity.append(mean_intensitry_in_cell)
 # add all the mean intensities of the cells in this image to a list
 intensities.append(intensity)

Image 1-0min.tif
Image 1-2min.tif
Image 1-4min.tif
Image 1-6min.tif
Image 1-8min.tif
Image 1-10min.tif

We now plot the intensitry for each cell over the time. The label of each line is the name of the corresponding MaskType.

[4]:

convert lists to numpy arrays
intensities = np.array(intensities).T
times = np.array(times)

iterate over cells
for mask_type, cell_int in zip(mask_types, intensities):
 plt.plot(times, cell_int, "-s", label=mask_type.name)

add legend and labels
plt.legend()
plt.xlabel("time (min)")
plt.ylabel("mean intensity")
display the plot
plt.show()

[image: ../_images/examples_example_plantroot_8_0.png]

How we want to visualize the cells in the image. Therefore we fetch the first image and its mask. Then we iterate over all mask types and draw countours around each masked region. Then we plot the centroid of the mask and the mask index.

[5]:

from skimage.measure import regionprops, label, find_contours

get the first image
image = db.getImage(0)
get the corresponding mask data
mask_data = image.mask.data
iterate over all mask types
for mask_type in mask_types:
 # get the mask data for that mask type
 mask = (mask_data == mask_type.index)

 # get the contour of the masked region and draw it
 contour = find_contours(mask, 0.5)[0]
 line, = plt.plot(contour[:, 1], contour[:, 0], '-', lw=1)

 # get the centroid and draw a dot with the same color
 prop = regionprops(label(mask))[0]
 y, x = prop.centroid
 plt.plot(x, y, 'o', color=line.get_color())
 # and a text showing the index of the mask type with the same color
 plt.text(x+3, y+3, '%d' % mask_type.index, color=line.get_color(), fontsize=15)
draw the image
plt.imshow(image.data)
and zoom in
plt.xlim(170, 410)
plt.ylim(430, 600)
plt.show()

[image: ../_images/examples_example_plantroot_10_0.png]

References

	Gerlitz2016

	Nadja Gerlitz. Dronpa. 2016.

Supervised Tracking of Fiducial Markers in Magnetic Tweezer Measurements

[image: Example bead tracking]
Left: the image of beads on cells loaded in ClickPoints. Right: displacement of beads.

In the example, we show how the ClickPoints addon Track can be used to track objects in an image and how the resulting tracks can later on be used to calculate displacements. [Bonakdar2016]

The data we show in this example are measurements of a magnetic tweezer, which uses a magnetic field to apply forces on cells. The cell is additionally tagged with non magnetic beads, with are used as fiducial markers.

The images can be opened with ClickPoints and every small bead (the fiducial markers) is marked with a marker of type tracks. Then the Track addon is started to finde the position of these beads in the subsequent images.

The resulting tracks can now be accessed and evaluated with Python and the ClickPoints package. Therefore we first open the ClickPoints file:

[2]:

%matplotlib inline

import numpy as np
import matplotlib.pyplot as plt

connect to ClickPoints database
database filename is supplied as command line argument when started from ClickPoints
import clickpoints
db = clickpoints.DataFile("track.cdb")

path track.cdb
Open database with version 18

Then we get all the tracks with getTracks(). In this example without any filtering, as we just want all the tracks available. We can iterate ofer the received object and access the Track objects. From them we can get the points and calculate their displacements with respect to their staring points.

[3]:

get all tracks
tracks = db.getTracks()

iterate over all tracks
for track in tracks:
 # get the points
 points = track.points
 # calculate the distance to the first point
 distance = np.linalg.norm(points[:, :] - points[0, :], axis=1)
 # plot the displacement
 plt.plot(track.frames, distance, "-o")

label the axes
plt.xlabel("# frame")
plt.ylabel("displacement (pixel)")

[3]:

<matplotlib.text.Text at 0x2b3f44019e8>

[image: ../_images/examples_example_tweezer_5_1.png]

We can now use getImage() to get the first image of the sequence and load the data from this file. This can now be displayed with matplotlib. To draw the tracks, we itarate over the track list again and plot all the points, as well, as the starting point of the track for a visualisation of the tracks.

[4]:

get the first image
im_entry = db.getImage(0)

we load the pixel data from the Image database entry
im_pixel = im_entry.data

plot the image
plt.imshow(im_pixel, cmap="gray")

iterate over all tracks
for track in tracks:
 # get the points
 points = track.points
 # plot the beginning of the track
 cross, = plt.plot(points[0, 0], points[0, 1], '+', ms=14, mew=1)
 # plot the track with the same color
 plt.plot(points[:, 0], points[:, 1], lw=3, color=cross.get_color())
 # plot the track id with a little offset and the same color
 plt.text(points[0, 0]+5, points[0, 1]-5, "#%d" % track.id, color=cross.get_color(), fontsize=15)

zoom into the image
plt.xlim(600, 800)
plt.ylim(400, 200)

[4]:

(400, 200)

[image: ../_images/examples_example_tweezer_7_1.png]

References

	Bonakdar2016

	Navid Bonakdar, Richard Gerum, Michael Kuhn, Marina Spörrer, Anna Lippert, Werner Schneider, Katerina E Aifantis, and Ben Fabry. Mechanical plasticity of cells. Nature Materials, 2016.

Using ClickPoints for Visualizing Simulation Results

[image: An example simulation]
Left: Tracks of the random walk simulation in ClickPoints. Right: Tracks plotted all starting from (0, 0).

Here we show how ClickPoints can be apart from viewing and analyzing images also be used to store simulation results in a ClickPoints Project file. This has the advantages that the simulation can later be viewed in ClickPoints, with all the features of playback, zooming and panning. Also the coordinates of the objects used in the simulation can later be accessed through the ClickPoints database file.

This simple example simulates the movement of 10 object which follow a random walk.

First some imports:

[1]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import clickpoints

Then we define the basic parameters for the simulation.

[2]:

Simulation parameters
N = 10
size = 100
size = 100
frame_count = 100

We create a new database. The attribute “w” stands for write, which ensures that we create a new database.

[3]:

create new database
db = clickpoints.DataFile("sim.cdb", "w")

path sim.cdb

We define a new marker type with the name “point” the color red (“#FF0000”) and the type TYPE_Track. Then we create N track instances for it.

[4]:

Create a new marker type
type_point = db.setMarkerType("point", "#FF0000", mode=db.TYPE_Track)

Create track instances
tracks = [db.setTrack(type_point) for i in range(N)]

We create some random initial positions for the tracks. We now iterate over the amout if frames we want to simulate. For each iteration we add a new image to the database using setImage(), then we add some random movement to the positions and store the new positions for the tracks using setMarkers(). Here we have to provide the current image and the list of Track objects.

[5]:

Fix the seed
np.random.seed(0)

Create initial positions
points = np.random.rand(N, 2)*size

iterate
for i in range(frame_count):
 # Create a new frame
 image = db.setImage("frame_%03d" % i, width=size, height=size)

 # Move the positions
 points += np.random.rand(N, 2)-0.5

 # Save the new positions
 db.setMarkers(image=image, x=points[:, 0], y=points[:, 1], track=tracks)

After the simulation, we want to access the tracks again to plot them. From every track we query the points and plot them.

[6]:

plot the results
for track in tracks:
 plt.plot(track.points[:, 0], track.points[:, 1], '-')
adjust the plot ranges
plt.xlim(0, size)
plt.ylim(size, 0)
and adjust the scaling to equal
plt.axis("equal")
plt.show()

[image: ../_images/examples_example_simulation_12_0.png]

We now plot the tracks in a different fashion, as a “rose” plot, where all the tracks start at the same position.

[7]:

plot the results
for track in tracks:
 # get the points
 points = track.points
 # substract the inital point
 points = points-points[0, :]
 # plot the track from the new origin
 plt.plot(points[:, 0], points[:, 1], '-')
and adjust the scaling to equal
plt.axis("equal")
plt.show()

[image: ../_images/examples_example_simulation_14_0.png]

[]:

Database API

ClickPoints comes with a powerful API which enables access from within python to ClickPoints Projects which are stored in a .cdb ClickPoints SQLite database.

To get started reading and writing to a database use:

	1
2

	import clickpoints
db = clickpoints.DataFile("project.cdb")

This will open an existing project file called project.cdb.

Note

The Examples section demonstrates the use of the API with various examples and provides a good
starting point to write custom evaluations.

Database Models

The .cdb file consists of multiple SQL tables in which it stores its information. Each table is represented in the API
as a peewee model. Users which are not familiar can use the API without any knowledge of peewee, as the API provides
all functions necessary to access the data. For each table a get (retrieve entries), set (add and change entries)
and delete (remove entries) function is provided. Functions with a plural name always work on multiple entries at once
and all arguments can be provided as single values or arrays if multiple entries should be affected.

The tables are: Meta, Path, Layer, Image, Offset, Track, MarkerType,
Marker, Line, Rectangle, Mask, MaskType, Annotation,
Tag, TagAssociation.

	
class Meta

	Stores key value pairs containing meta information for the ClickPoints project.

	Attributes:

	
	key (str, unique) - the key

	value (str) - the value for the key

	
class Path

	Stores a path. Referenced by each image entry.

See also: getPath(), getPaths(), setPath(),
deletePaths().

	Attributes:

	
	path (str, unique) - the path

	images (list of Image) - the images with this path.

	
class Image

	Stores an image.

See also: getImage(), getImages(), getImageIterator(),
setImage(), deleteImages().

	Attributes:

	
	filename (str, unique) - the name of the file.

	ext (str) - the extension of the file.

	frame (int) - the frame of the file (0 for images, >= 0 for images from videos).

	external_id (int) - the id of the file entry of a corresponding external database. Only used when ClickPoints is started from an external database.

	timestamp (datetime) - the timestamp associated to the image.

	sort_index (int, unique) - the index of the image. The number shown in ClickPoints next to the time line.

	width (int) - None if it has not be set, otherwise the width of the image.

	height (int) - None if it has not be set, otherwise the height of the image.

	path (Path) - the linked path entry containing the path to the image.

	layer (int) - the id separating different kinds of images for the same sort_index.

	offset (Offset) - the linked offset entry containing the offsets stored for this image.

	annotation (Annotation) - the linked annotation entry for this image.

	markers (list of Marker) - a list of marker entries for this image.

	lines (list of Line) - a list of line entries for this image.

	rectangles (list of Rectangle) - a list of rectangle entries for this image.

	mask (Mask) - the mask entry associated with the image.

	data (array) - the image data as a numpy array. Data will be loaded on demand and cached.

	data8 (array, uint8) - the image data converted to unsigned 8 bit integers.

	getShape() (list) - a list containing height and width of the image. If they are not stored in the database yet, the image data has to be loaded.

	
class Offset

	Offsets associated with an image.

See also: setOffset(), deleteOffsets().

	Attributes:

	
	image (Image) - the associated image entry.

	x (int) - the x offset

	y (int) - the y offset

	
class Layer

	Stores the name of a layer. Referenced by each image entry.

See also: getLayer(), getLayers(), setLayer(),
deleteLayers().

	Attributes:

	
	name (str, unique) - the name of the layer

	images (list of Image) - the images with this layer.

	
class Track

	A track containing multiple markers.

See also: getTrack(), getTracks(), setTrack(), deleteTracks(), getTracksNanPadded().

	Attributes:

	
	style (str) - the style for this track.

	text (str) - an additional text associated with this track. It is displayed next to the markers of this track in ClickPoints.

	hidden (bool) - whether the track should be displayed in ClickPoints.

	points (array) - an Nx2 array containing the x and y coordinates of the associated markers.

	points_corrected (array) - an Nx2 array containing the x and y coordinates of the associated markers corrected by the offsets of the images.

	markers (list of Marker) - a list containing all the associated markers.

	times (list of datetime) - a list containing the timestamps for the images of the associated markers.

	frames (list of int) - a list containing all the frame numbers for the images of the associated markers.

	image_ids (list of int) - a list containing all the ids for the images of the associated markers.

	Methods:

	
	
split(marker)

	Split the track after the given marker and create a new track which contains all the markers after the given marker.

	Parameters:

	
	marker (int, Marker) - the marker id or marker entry at which to split.

	Returns:

	
	new_track (Track) - the new track which contains the markers after the given marker.

	
removeAfter(marker)

	Remove all the markers from the track after the given marker.

	Parameters:

	
	marker (int, Marker) - the marker id or marker entry after which to remove markers.

	Returns:

	
	count (int) - the amount of deleted markers.

	
merge(track)

	Merge the track with the given track. All markers from the other track are moved to this track. The other track
which is then empty will be removed. Only works if the tracks don’t have markers in the same images, as this would
cause ambiguities.

	Parameters:

	
	track (int, Track) - the track id or track entry whose markers should be merged to this track.

	Returns:

	
	count (int) - the amount of new markers for this track.

	
changeType(new_type)

	Change the type of the track and its markers to another type.

	Parameters:

	
	new_type (str, int MarkerType) - the id, name or entry for the marker type which should be the new type of this track. It has to be of mode TYPE_Track.

	Returns:

	
	count (int) - the amount of markers that have been changed.

	
class MarkerType

	A marker type.

See also: getMarkerTypes(), getMarkerType(), setMarkerType(), deleteMarkerTypes().

	Attributes:

	
	name (str, unique) - the name of the marker type.

	color (str) - the color of the marker in HTML format, e.g. #FF0000 (red).

	mode (int) - the mode, hast to be either: TYPE_Normal, TYPE_Rect, TYPE_Line or TYPE_Track

	style (str) - the style of the marker type.

	text (str) - an additional text associated with the marker type. It is displayed next to the markers of this type in ClickPoints.

	hidden (bool) - whether the markers of this type should be displayed in ClickPoints.

	markers (list of Marker) - a list containing all markers of this type. Only for TYPE_Normal and TYPE_Track.

	lines (list of Line) - a list containing all lines of this type. Only for TYPE_Line.

	markers (list of Rectangle) - a list containing all rectangles of this type. Only for TYPE_Rect.

	
class Marker

	A marker.

See also: getMarker(), getMarkers(), setMarker(),
setMarkers(), deleteMarkers().

	Attributes:

	
	image (Image) - the image entry associated with this marker.

	x (float) - the x coordinate of the marker.

	y (float) - the y coordinate of the marker.

	type (MarkerType) - the marker type.

	processed (bool) - a flag that is set to 0 if the marker is manually moved in ClickPoints, it can be set from an add-on if the add-on has already processed this marker.

	style (str) - the style definition of the marker.

	text (str) - an additional text associated with the marker. It is displayed next to the marker in ClickPoints.

	track (Track) - the track entry the marker belongs to. Only for TYPE_Track.

	correctedXY() (array) - the marker position corrected by the offset of the image.

	pos() (array) - an array containing the coordinates of the marker: [x, y].

	Methods:

	
	
changeType(new_type)

	Change the type of the marker.

	Parameters:

	
	new_type (str, int MarkerType) - the id, name or entry for the marker type which should be the new type of this marker. It has to be of mode TYPE_Normal.

	
class Line

	A line.

See also: getLine(), getLines(), setLine(),
setLines(), deleteLines().

	Attributes:

	
	image (Image) - the image entry associated with this line.

	x1 (float) - the first x coordinate of the line.

	y1 (float) - the first y coordinate of the line.

	x2 (float) - the second x coordinate of the line.

	y2 (float) - the second y coordinate of the line.

	type (MarkerType) - the marker type.

	processed (bool) - a flag that is set to 0 if the line is manually moved in ClickPoints, it can be set from an add-on if the add-on has already processed this line.

	style (str) - the style definition of the line.

	text (str) - an additional text associated with the line. It is displayed next to the line in ClickPoints.

	correctedXY() (array) - the line positions corrected by the offset of the image.

	pos() (array) - an array containing the coordinates of the line: [x, y].

	length() (float) - the length of the line in pixel.

	angle() (float) - the angle of the line to the horizontal in radians.

	Methods:

	
	
changeType(new_type)

	Change the type of the line.

	Parameters:

	
	new_type (str, int MarkerType) - the id, name or entry for the marker type which should be the new type of this line. It has to be of mode TYPE_Line.

	
class Rectangle

	A rectangle.

See also: getRectangle(), getRectangles(), setRectangle(),
setRectangles(), deleteRectangles().

	Attributes:

	
	image (Image) - the image entry associated with this rectangle.

	x (float) - the x coordinate of the rectangle.

	y (float) - the y coordinate of the rectangle.

	width (float) - the width of the rectangle.

	height (float) - the height of the rectangle.

	type (MarkerType) - the marker type.

	processed (bool) - a flag that is set to 0 if the rectangle is manually moved in ClickPoints, it can be set from an add-on if the add-on has already processed this line.

	style (str) - the style definition of the rectangle.

	text (str) - an additional text associated with the rectangle. It is displayed next to the rectangle in ClickPoints.

	correctedXY() (array) - the rectangle positions corrected by the offset of the image.

	pos() (array) - an array containing the coordinates of the rectangle: [x, y].

	slice_x(border=0) (slice) - a slice object to use the rectangle to cut out a region of an image

	slice_y(border=0) (slice) - a slice object to use the rectangle to cut out a region of an image

	slice(border=0) (tuple) - a tuple of a y-slice and an x-slice, border specifies an additional border to slice around the rectangle

	area() (float) - the area of the rectangle

	Methods:

	
	
changeType(new_type)

	Change the type of the rectangle.

	Parameters:

	
	new_type (str, int MarkerType) - the id, name or entry for the marker type which should be the new type of this rectangle. It has to be of mode TYPE_Rect.

	
cropImage(image=None, with_offset=True, with_subpixel=True, border=0)

	Crop a region of the given image provided by the rectangle.

	Parameters:

	
	image (ndarray, * :py:class:`Image` *) - the image as a database entry or a numpy array.

	with_offset (bool) - whether to apply the offset of the image. Default True.

	with_subpixel (bool) - whether to apply a subpixel shift for the region. Default True.

	border (number) - a number of border pixels to add to the region. Default 0.

	
class Mask

	A mask entry.

See also: getMask(), getMasks(), setMask(), deleteMasks().

	Attributes:

	
	image (Image) - the image entry associated with this marker.

	data (array) - the mask image as a numpy array. Mask types are stored by their index value.

	
class MaskType

	A mask type.

See also: getMaskType(), getMaskTypes(), setMaskType(),
deleteMaskTypes().

	Attributes:

	
	name (str) - the name of the mask type.

	color (str) - the color of the mask type in HTML format, e.g. #FF0000 (red).

	index (int) - the integer value used to represent this type in the mask.

	
class Annotation

	An annotation.

See also: getAnnotation(), getAnnotations(), setAnnotation(), deleteAnnotations().

	Attributes:

	
	image (Image) - the image entry associated with this annotation.

	timestamp (datetime) - the timestamp of the image linked to the annotation.

	comment (str) - the text of the comment.

	rating (int) - the value added to the annotation as rating.

	tags (list of Tag) - the tags associated with this annotation.

	
class Tag

	A tag for an Annotation.

See also: getTag(), getTags(), setTag(), deleteTags().

	Attributes:

	
	name (str) - the name of the tag.

	annotations (list of Annotation) - the annotations associated with this tag.

	
class TagAssociation

	A link between a Tag and an Annotation

	Attributes:

	
	annotation (Annotation) - the linked annotation.

	tag (Tag) - the linked tag.

DataFile

The DataFile is the interface to the ClickPoints database. This can either be used in external evaluation scripts that
take data clicked in ClickPoints for further evaluation or in add-on scripts where it is accessible through the self.db
class variable.

Add-on API

ClickPoints allows to easily write add-on scripts.

Note

The Addons section demonstrates how the add-ons can be used and may serve as a good starting point
to write custom add-ons.

The add-on consists of at least two files. A meta data file with .txt ending which contains basic information on the add-on and a script file
providing an overloaded class of clickpoints.Addon as shown above.

Meta Data File

The file has to start with [addon] followed by lines with key and value pairs:
A typical meta file looks like this:

	1
2
3
4
5
6
7

	[addon]
name=My new Add-on
file=Addon.py
icon=fa.flask
description=This add-on makes cool new things.
image=Image.png
requirements=xlwt

	
	name - name=My new Add-on

	Defines the name of the add-on. This name is displayed in ClickPoints in the add-on list.

	
	file - file=Addon.py

	Defines the filename of the python file that contains the add-on class.

	
	icon - icon=fa.flask

	Defines the icon of the add-on. It can be either a filename or a valid qtawesome icon name (see https://github.com/spyder-ide/qtawesome, e.g. it starts with fa. followed by the name of a font awesome icon
see the font awesome iconlist [https://fontawesome.com/v4.7.0/icons/]).

	
	image - image=Image.png

	Defines the image of the add-on. The image will be displayed in ClickPoints in the add-on list directly above the
description. The image should have a dimension of 300x160 pixel.

	
	description - description=This add-on makes cool new things.

	Defines a short description for the add-on. If a longer description is desired, a file called Desc.html next to the
*.txt file can be used. This file supports rich text with an html subset defined by Qt Html Subset [http://doc.qt.io/qt-4.8/richtext-html-subset.html].

	
	requirements - requirements=xlwt,skimage

	Define the packages that this add-on needs. Multiple packages have to be separated by a komma.

Script File

The script file has to contain a class called Addon which is derived
from a prototype Add-on class:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	import clickpoints

class Addon(clickpoints.Addon):
 def __init__(self, *args, **kwargs):
 clickpoints.Addon.__init__(self, *args, **kwargs)

 print("I am initialized with the database", self.db)
 print("and the ClickPoints interface", self.cp)

 def run(self, *args, **kwargs):
 print("The user wants to run me")

This class will allow you to overload the init function were your add-on can set up its configuration, e.g. add some
new marker types to ClickPoints.

To process data, you can overload the run function. Here the add-on can do it’s heavy work. Some caution has to be
taken when executing interface actions, as run is called in a second thread to not block ClickPoints during its
execution. For a good example of an add-on that uses the run function, refer to the Track Add-on.

But add-ons can also provide passive features that are not executed by a call of the run method, but rely on callbacks.
Here a good example is the Measure Tool Add-on, which just reacts on the MarkerMoved callback.

The add-on class has two main member variables: self.db and self.cp.

	self.db is a DataFile instance which gives access to the ClickPoints database. For details on the interface see Database API.

	self.cp is a Commands instance which allows for communication with the ClickPoints interface.

Defining Options

Add-ons can define their own options that are saved in the database along the ClickPoints options. They are also included
in the ClickPoints options menu and the export of options.

New options should be defined in the __init__ function of the add-on. Therefore, the add-on class has some methods to
add, get and set options:

	
addOption(key, default, value_type="string", values=None, display_name="", hidden=False, tooltip="", min_value=None, max_value=None, value_count=1)

	Define a new option value for the add-on.

	Parameters:

	
	key (str) - the name of the option.

	default (str, int, float, list) - the default value for the option.

	value_type (str) - the type of the value, can be string, int, float, bool, choice

	values (list) - allowed values if the type is choice.

	display_name (str) - the name to display in the option menu.

	hidden (bool) - weather the option should be displayed in the option menu.

	tooltip (str) - the tooltip of the option in the option menu.

	min_value (number) - the minimal value for a int or float option.

	max_value (number) - the maximum value for a int or float option.

	decimals (number) - the number of decimals to allow for a float option.

	value_count (int) - it the option should accept a list of values. Only for int values.

	
getOption(key)

	Return the current value of an option.

	Parameters:

	
	key (str) - the name of the option.

	
setOption(key, value)

	Set the current value of an option.

	Parameters:

	
	key (str) - the name of the option.

	value (str, int, float, list) - the new value of the option.

	
getOptions()

	Return a list of all options of this add-on. The list contains option objects with the following properties:

	Properties:

	
	key (str) - the name of the option.

	value (str, int, float, list) - the current value of the option.

	default (str, int, float, list) - the default value for the option.

	value_type (str) - the type of the value, can be string, int, float, bool, choice

	values (list) - allowed values if the type is choice.

	display_name (str) - the name to display in the option menu.

	hidden (bool) - weather the option should be displayed in the option menu.

	tooltip (str) - the tooltip of the option in the option menu.

	min_value (number) - the minimal value for a int or float option.

	max_value (number) - the maximum value for a int or float option.

	value_count (int) - it the option should accept a list of values. Only for int values.

Events

Events are actions that occur in the main ClickPoints program. The add-ons are notified for this events and can react to
them.

	
markerAddEvent(entry)

	A marker (line or rectangle) was added to the current image.

	Parameters:

	
	entry (Marker , Line , Rectangle) - the new marker.

	
markerRemoveEvent(entry)

	A marker (line or rectangle) was removed to the current image.

	Parameters:

	
	entry (Marker , Line , Rectangle) - the removed marker.

	
markerMoveEvent(entry)

	A marker (line or rectangle) was moved.

	Parameters:

	
	entry (Marker , Line , Rectangle) - the moved marker.

	
buttonPressedEvent()

	The button for this add-on was pressed. If not overloaded it will just call self.run_threaded() to executed the
add-on’s self.run method in a new thread.

A typical overloading for gui based add-ons would be to call the self.show method:

def buttonPressedEvent(self):
 self.show()

	
zoomEvent(scale, pos)

	The zoom of the ClickPoints window has changed.

	Parameters:

	
	scale (number) - the new scale factor of the displayed image.

	pos (QPoint) - the origin point of the zoom. Typically the mouse cursor position.

	
frameChangedEvent()

	The current frame in ClickPoints changed. Called when the image data is loaded, before it is displayed.

	
imageLoadedEvent(filename, framenumber)

	The displayed image in ClickPoints changed. Called when the new image is loaded and displayed.

	Parameters:

	
	filename (string) - the filename of the new image.

	framenumber (int) - the frame number of the new image.

	
keyPressEvent(event)

	A key has been pressed in the ClickPoints window.

	Parameters:

	
	event (QKeyEvent) - the key press event. With event.key() they key can be queried and compared to the key constants (see Qt::Key [http://doc.qt.io/qt-4.8/qt.html#Key-enum]).

Commands

Add-ons have some basic functions to communicate with the main ClickPoints window. This interface is accessible through
the self.cp class variable in the add-on class.

Index

 A
 | B
 | F
 | G
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | Z

A

 	
 	addOption() (built-in function)

 	
 	Annotation (built-in class)

B

 	
 	buttonPressedEvent() (built-in function)

F

 	
 	frameChangedEvent() (built-in function)

G

 	
 	getOption() (built-in function)

 	
 	getOptions() (built-in function)

I

 	
 	Image (built-in class)

 	
 	imageLoadedEvent() (built-in function)

K

 	
 	keyPressEvent() (built-in function)

L

 	
 	Layer (built-in class)

 	
 	Line (built-in class)

 	Line.changeType() (built-in function)

M

 	
 	Marker (built-in class)

 	Marker.changeType() (built-in function)

 	markerAddEvent() (built-in function)

 	markerMoveEvent() (built-in function)

 	
 	markerRemoveEvent() (built-in function)

 	MarkerType (built-in class)

 	Mask (built-in class)

 	MaskType (built-in class)

 	Meta (built-in class)

O

 	
 	Offset (built-in class)

P

 	
 	Path (built-in class)

R

 	
 	Rectangle (built-in class)

 	
 	Rectangle.changeType() (built-in function)

 	Rectangle.cropImage() (built-in function)

S

 	
 	setOption() (built-in function)

T

 	
 	Tag (built-in class)

 	TagAssociation (built-in class)

 	Track (built-in class)

 	
 	Track.changeType() (built-in function)

 	Track.merge() (built-in function)

 	Track.removeAfter() (built-in function)

 	Track.split() (built-in function)

Z

 	
 	zoomEvent() (built-in function)

 _images/ModulesMarkerSmartText.png
16773.40 | 41.21
23457558 e

_images/ModulesMarkerTracking.png

_images/ModulesMarkerMarkerEditor.png
4 MarkerEditor - ClickPoints - o x

v S b
Vv Track #1(5)
Marker #1 (frame 12635)
Marker #2 (frame 12636)
Marker #5 frame 12637)
Marker #3 (frame 12636)
Marker #17 (frame 12639)
Track#2(6)
Track #3 (5)
< rectangle
< line
“ tet
+ addtype

_images/ModulesMarkerSizes.png

_images/ModulesTimeline.png

_images/example_beadtracking.png
displacement (um)

time (s)

_images/ModulesMarkerTypes.png
2: TYPE_Rect 2

3: TYPE_Line 2

T

_images/ModulesMask.png
1: delete

2: Central Cell

3: Upper Cell

4: Upper Left Cell
5: Lower Left Cell
6: Lower Cell

7: Lower Right
8: Upper Right
+ add

_images/example_counts.png
400

BN adults
. juveniles

350

300

250

200

T
E
£
s
5
*

150

100

2015 Mar Apr May Jun Sl Aug

_images/example_plantroot.png
mean intensity

Central Cell
Upper Cell
Upper Left Cell
Lower Left Cell
Lower Cell
Lower Right Cell
Upper Right Cell

it

1.2 3 4 5 6 7 8 9 10

time (min)

_images/examples_example_plantroot_10_0.png

_images/examples_example_plantroot_8_0.png
mean intensity

&

B

5

Central Cell
Upper Cell
Upper Left Cell
Lower Left Cell
Lower Cell
Lower Right Cell
Upper Right Cell

IEXLLEL!

time (min)

nav.xhtml

 Table of Contents

 		
 Welcome to the ClickPoints Documentation

 		
 Installation

 		
 Windows Installer

 		
 Python Packages

 		
 Developer Version

 		
 Possible Errors

 		
 General

 		
 Zooming, Panning, Rotating

 		
 Jumping frames

 		
 Interfaces

 		
 Tutorial

 		
 Opening Files and Folders

 		
 via Interface

 		
 via Context Menu

 		
 via Commandline Parameter

 		
 via .txt File

 		
 Using ConfigFiles

 		
 Scope

 		
 Manual Tracking

 		
 Getting started

 		
 Taking Measurements

 		
 Modules

 		
 Timeline

 		
 Frame Timeline

 		
 Date Timeline

 		
 GammaCorrection

 		
 Gamma

 		
 Brightness

 		
 Keys

 		
 VideoExporter

 		
 Keys

 		
 Annotations

 		
 Keys

 		
 Marker

 		
 Marker types

 		
 Marker display

 		
 Tracking mode

 		
 Marker Editor

 		
 Marker Style Definitions

 		
 Marker Text & SmartText

 		
 Mask

 		
 Define colors

 		
 Brush size

 		
 Color picker

 		
 Mask transparency

 		
 Mask update

 		
 Config Parameter

 		
 Keys

 		
 Info Hud

 		
 Examples

 		
 Add-ons

 		
 Tracking

 		
 Fluorescence Diffusion

 		
 1. Add the add-on

 		
 2. Create a mask-type for each cell

 		
 3. Paint the cell area for each cell in each image

 		
 4. Specify the links between cells

 		
 5. Specify the time between two images

 		
 6. Specify which image channel to use

 		
 7. Calculate Intensities

 		
 8. Calculate Diffusion

 		
 Drift Correction

 		
 Cell Detector

 		
 Grab Plot Data

 		
 Examples

 		
 Count Animals

 		
 Flourescence intensities in plant roots

 		
 Bead Tracking

 		
 Simulation Visualisation

 		
 Database API

 		
 Database Models

 		
 DataFile

 		
 Add-on API

 		
 Meta Data File

 		
 Script File

 		
 Defining Options

 		
 Events

 		
 Commands

_images/examples_example_count_6_0.png
of animals

image 1

image 2

-t
= juvenile

image 3

_images/examples_example_count_8_0.png
500 750 1000 1250 1500 1750 2000

_images/examples_example_tweezer_5_1.png
(131d) uawadeidsip

_images/examples_example_tweezer_7_1.png

_images/examples_example_simulation_12_0.png
2

B

150

130

_images/examples_example_simulation_14_0.png
25 oo 75 s0 75 100

s =0

100

_images/AddonFluorescenceDiffusion.png
@ 1-Omin.if - plant_root_right.cdb - ClickPoints - Layer 0 - o x | &
& >0 B (¢S4

[+ o]] lr hanne b < celll
M Connect 61 5 — i
> — cell3

Sy o0dSHiDe 00s 205 405 60 20: 0| 240 lla
celll 918 1368 1419 1330 1392 14] — cells

£ 30 e

cl2 878 882 871 823 8% &3] & cel

82 — cell7

i3 550 545 62 626 723 703 —

cells 3
celld 5638 3000 2801 2138 1875 17, 10
————
ERCUGIRATI (o5 772 789 214 805 886 93]

0 2 4 6 8 10

cels 1028 1552 1612 1454 1439 144 P

cel7 415 485 567 S8 642 64

A€ > Q=W

Diffusion celll
50 —_—
celll - celld 0.0 cell2
> — cell3
cell3 - celld 00 7 © — celld
g —_—
celld- cell7 00 2 5 (e::S
= cells
e 00 . el
e 00 —
o [09 === T
o 2 4 6 8 10

time (s)

A€ > Q=W

5 075 0.1 | ———————(;;]

_images/AddonGrabPlotData.png
@ Data.png - data.cdb - ClickPoints - o x
& >0 B | 2 ¢ L P ?

. .
' '
4.0 H H
. ' '
.
3.5 H H 4 MarkerEditor - ClickPoints - o x
. .
' ' v S e P
3.0 H H Marker #1 (frame 0) s X -
M ' Marker #2 (frame 0) X: @
2.5 H H © yais 3 -
. ' ' < data E 22,27 S
. ' ' i)]
15 H H Line Leng 66232
: H H Swve Remove | | Cancel
. .
1.0 ' '
'
'
T
H
.

00 20 40 60 80 100 120 140 160

0/1 0.0fs =
B e . ———————————— (s] [

_images/tutorial_configfiles.png
&Research

ClickPointsConfig.txt
E Experiment_1
a o

Experiment_3
ClickPointsConfig.txt

& 2014_01
E 2014_02

_images/AddonCellDetector.png
oxProjt - | @ 20160407-140137_Micd.rep

_images/AddonTracking.png
select starting start tracking algorthm stop tracking algorithm restart tracking algorithm
points for tracks (add-on script) and correct output

_images/example_simulation.png
@ frame 099 - sim.cdb - ClickPoints
=[]0 [8 @ |«

] 5909 108

z

None

_images/IconAddon.png
[}

_static/ajax-loader.gif

_images/IconAdjust.png

_images/tutorial_tracking_styles.png
Bird S
+ add type

_images/tutorial_tracking_tracks.jpg

_images/IconFlask.png

_static/comment.png

_images/IconFolder.png

_static/down-pressed.png

_images/IconAnnotation.png

_static/comment-bright.png

_images/IconCode.png
<>

_static/comment-close.png

_images/IconPanel.png
5 >0 H | 2 & L P

_images/IconPlay.png

_images/IconMarker.png

_images/IconMask.png

_images/tutorial_tracking_marker.png
nsaved prec - CckPoits

1: marker
v add type

 MarkEdior - ChkPoinis

o
+ sastype

e ¥

_images/tutorial_tracking_smarttext.png
+ add type

_images/IconVideo.png

_images/Logo.png
Points

_static/up-pressed.png

_static/minus.png

_images/IconSave.png

_static/plus.png

_images/ModulesDateTimeline.png
30/254 10.0fps
2013-07-22 11:41:05.30

_images/ModulesGamma.png

_images/ModuleAnnotations.png
[+ st remeocz S = L 8 22

1 Annotations.

Date Tg Comment

attackl_Framed0 landing A bird lands,

attackl_Framed0 approach

attack]_Framed0 attack A bird attacks penguins.

_static/up.png

_images/ModuleInfoHud.png
Recording Time: 2013:04:17 10:31:13
Exposure: (10, 2360)

_images/ModulesMarker.png
dult 9
3¢ juvenile 18

_images/ModulesGammaBrightness.png

_images/ModulesGammaGamma.png
Gamiha: 1.50 ’

Mais5

_static/file.png

_static/down.png

