
clickpoints Documentation
Release 1.1

Richard Gerum, Sebastian Richter

May 15, 2017

Contents

1 Installation 3
1.1 Windows . 3
1.2 Linux . 4
1.3 Mac . 4

2 General 5
2.1 Zooming, Panning, Rotating . 6
2.2 Jumping frames . 6
2.3 Interfaces . 6

3 Tutorial 7
3.1 Opening Files and Folders . 7
3.2 Using ConfigFiles . 8
3.3 Manual Tracking . 9
3.4 Taking Measurements . 12

4 Modules 15
4.1 Timeline . 15
4.2 GammaCorrection . 17
4.3 VideoExporter . 19
4.4 Annotations . 19
4.5 Marker . 20
4.6 Mask . 26
4.7 Info Hud . 28

5 Add-ons 31
5.1 Tracking . 31
5.2 Drift Correction . 32
5.3 Cell Detector . 32
5.4 Grab Plot Data . 32

6 Examples 35
6.1 Count Penguins . 35
6.2 Flourescence intensities in plant roots . 36
6.3 Supervised Tracking of Fiducial Markers in Magnetic Tweezer Measurements 38
6.4 Using ClickPoints for Visualizing Simulation Results . 39

i

7 Database API 41
7.1 Database Models . 41
7.2 DataFile . 46

8 Add-on API 65
8.1 GetCommandLineArgs . 65
8.2 Commands . 66

9 Citing ClickPoints 69

10 Note 71

Bibliography 73

ii

clickpoints Documentation, Release 1.1

Click Points is a program written in the Python programming language, which serves on the one hand as an image
viewer and on the other hand as an data display and annotation tool. Every frame can be annotated by a description,
marked points/tracks, or marked areas (paint brush). This helps to view image data, do manual evaluation of data, help
to create semi-automatic evaluation or display the results of automatic image evaluation.

Contents 1

clickpoints Documentation, Release 1.1

2 Contents

CHAPTER 1

Installation

ClickPoints can be installed in different ways, you can choose the one which is the most comfortable for you and the
operating system you are using.

Windows

Installer

We provide an installer for ClickPoints on Windows 64bit platforms.

Download: ClickPoints Installer

Additionally, you need an installation of Python with the packaged needed by ClickPoints. For convenience we provide
a WinPython installation with all the packages already installed. We recommend to used ClickPoints with this Python
installation.

Download: WinPython for ClickPoints Installer

Note: We recommend that you install ClickPoints to C:\Software\ClickPoints, as the Program files
folder requires to always provide admin privileges when modifying any files.

Cutting Edge Version (Mercurial)

If you prefer to have the latest version with the latest features and bugfixes, you can grab the tip version from our
mercurial repository.

hg clone https://bitbucket.org/fabry_biophysics/clickpoints

For adding clickpoints to the right click menu in the file explorer, execute the install_clickpoints.bat in the
installation folder.

3

https://bitbucket.org/fabry_biophysics/clickpoints/downloads/ClickPoints_latest.exe
https://bitbucket.org/fabry_biophysics/clickpoints/downloads/WinPython_ClickPoints.exe

clickpoints Documentation, Release 1.1

Warning: If you don’t use our provided Python installation, you need to install the required packages. Missing
packages will throw an ImportError, e.g. ImportError: No module named peewee. This means this
package is missing and has to be installed. While most packages can be easily installed using pip, unfortunately
some packages don’t install out of the box with pip install PACKAGENAME but wheel files for these pack-
ages be obtained for Windows from Christoph Gohlke’s Unofficial Windows Binaries or if you are on Linux from
your distributions package repositories, e.g. using sudo apt install python-PACKAGENAME

Linux

Download the Cutting Edge Version (Mercurial) and run the install_bat.py, which will create a command line
command clickpoints and add ClickPoints to the menu for right clicking on folders/images in the file browser
(e.g. nautilus or dolphin).

Mac

Not yet supported. ClickPoints hasn’t been tried on Mac yet and ClickPoints won’t be added to the Finder right click
menu yet. If you have python already installed, you can refer to the installation from Cutting Edge Version (Mercurial)
to try to get it working yourself.

4 Chapter 1. Installation

http://www.lfd.uci.edu/~gohlke/pythonlibs/

CHAPTER 2

General

Once ClickPoints has been installed it can be started directly from the Start Menu/Program launcher or by running the
ClickPoints.bat, or respectively ClickPoints in Linux.

Attention: If the ClickPoints.bat file isn’t present in the ClickPoints directory the install_bat.py
script needs to be executed first.

This will open ClickPoints with an empty project.

Images can be added to the project by using .

The project can be saved by clicking on .

ClickPoints can also be used to directly open images, videos or folder by right clicking on them, which will open an
unsaved project which already contains some images. This way ClickPoints functions as an image viewing tool.

ClickPoints can be opened with various files as target:

• an image, loading all images in the folder of the target image.

• a video file, loading only this video.

• a folder, loading all image and video files of the folder and its sub folders, which are concatenated to one single
image stream.

• a previously saved .cdb ClickPoints Project file, loading the project as it was saved.

Pressing Esc closes ClickPoints.

To easily access marker, masks, track or other information, stored in the .cdb ClickPoints Project file, we provide a
python based API

5

clickpoints Documentation, Release 1.1

Attention: If you plan to evaluate your data set or continue working on the same data set you must save the
project - otherwise all changes will be lost upon closing the program. If a project was saved, all changes are saved
automatically upon frame change or by pressing S

Zooming, Panning, Rotating

ClickPoints opens with a display of the current image fit to the window. The display can be

• zoomed, using the mouse wheel

• panned, holding down the right mouse button

• rotated using R.

To fit the image into the window press F and switch to full screen mode by pressing W.

Note: Default rotation on startup or and rotation steps with each press of R can be defined in the
ConfigClickPoints.txt with the entries rotation = and rotation_steps =.

Jumping frames

ClickPoints provides various options to change the current frame.

• The keys Left and Right go to the previous or next frame.

• The keys Home and End jump to the first or last frame.

• Click or Drag & Drop the timeline slider

Key pairs on the numpad allow for jumps of speciefied

• Numpad 2, Numpad 3: -/+ 1

• Numpad 5, Numpad 6: -/+ 10

• Numpad 8, Numpad 9: -/+ 100

• Numpad /, Numpad *: -/+ 1000

Be sure to have the numpad activated, or the keys won’t work.

Note: The step size of the jump keys can be redefined by the jumps = variable in the ConfigClickPoints.txt

For continuous playback of frames see timeline module.

Interfaces

The interfaces for Marker, Mask and GammaCorretion can be shown/hidden pressing F2.

6 Chapter 2. General

CHAPTER 3

Tutorial

The recipes section contains some basic usage examples on how to get started using ClickPoints and explains different
wa for different tasks.

Opening Files and Folders

ClickPoints was designed with multiple usage keys in mind, and therefore provides multiple ways to open files.

Attention: Opening a set of files for the first time can take some time to extract time and meta information from
the filename, TIFF or EXIF header. For large collections of files it is recommended to save the collection as a
project and use the .cdb file for starting ClickPoints. Saving time as no file system search is necessary and all
meta information is already stored in the .cdb

via Interface

ClickPoints can be started empty by using a desktop link or calling ClickPoints.bat from CMD (Windows), or
respectively ClickPoints from a terminal (Linux).

Images can be added by using |the folder button|.

via Context Menu

A fast and comfortable way to open files and folders with ClickPoints is the context menu.

ClickPoints can be opened with various files as target:

• an image, loading all images in the folder of the target image.

• a video file, loading only this video.

7

clickpoints Documentation, Release 1.1

• a folder, loading all image and video files of the folder and its sub folders, which are concatenated to one single
image stream.

• a previously saved .cdb ClickPoints Project file, loading the project as it was saved.

via Commandline Parameter

ClickPoints can be run directly from the commandline, e.g. to open the files in the current or a specific folder

ClickPoints "C:\Images"

or

python ClickPoints.py -srcfile="C:\Images"

Note: To use the short version of calling ClickPoints without the path, you have to add ClickPoints base path to the
systems or users PATH variable (Windows) or create an alias (Linux).

via .txt File

Furthermore it is possible to supply a text file where each line contains the path to an image or video file. This is useful
e.g. to open a fixed set of files, a list of files extract by another application or a database interface.

ClickPoints "sample.txt"

Listing 3.1: sample.txt

1 20120919_colonydensity.gif
→˓ # relativ path (to txt file)

2 C:\Users\Desktop\images\20160601-141408_GE4000.jpg # absolut path
3 \\192.168.0.99\2014\20140323\03\20140323-030151_31n2.JPG # network path

Note: It is possible to open files over the network e.g. via samba shares. On Linux systems it is necessary do mount
the network drive first!

Using ConfigFiles

The config file contains parameters to adjust ClickPoints to the users needs, adjusts default behaviour or configure key
bindings. A GUI is available to set parameters during runtime, the ConfigFile is used to set default behaviour.

Scope

Config files in ClickPoints are designed to optimize the work flow. Upon opening a file the path structure is searched
for the first occurrence of a valid config file. Thereby allowing the user to specify default for files grouped in one
location.

If no config file is found, the default config values as set in click points base path are used (green). A config file located
in the path “research” (blue) will overwrite these values and is used for files opened in child paths. Allowing the user

8 Chapter 3. Tutorial

clickpoints Documentation, Release 1.1

to define a preferred setup. In addition we can add a second config file lower in the path tree to specify a specific setup
for all files that were stored under “Experiment_3”. This can contain a set of default marker names, which features to
use or which add-ons to include.

Fig. 3.1: Scope of ConfigFiles

Note: A graphical user interface to view and change config values is available too.

Manual Tracking

This tutorial gives a shot introduction how to get started manually labeling your own tracks, for a quick evaluation or
ground truths for the evaluation of automated algorithms.

Getting started

1. Open the image sequence or video(s) in ClickPoints

For example: right click on the folder containing your images and select ClickPoints on the context menue

2. Save the project

Marked results and correlated images must be stored some where, there for the project hast to be named

and saved. Click on the save button and select a storage location and file name.

Note: Reference to images and video is stored relative as long a the files reside parallel or below in the
path tree. If the files reside above or on a different branch, drive, or network location, the absolute path is
stored.

3.3. Manual Tracking 9

clickpoints Documentation, Release 1.1

3. Define Marker types

Before we can get started we have to specify a marker type. Marker types are like classes of objects, e.g.
we might use a class for birds and another one for ships. Every marker type can have multible tracks.

To open the marker menu either press F2 or click on the Marker button to switch to edit mode
(Fig. A). Then right click onto the marker list to open the marker menu (Fig. B). You can reuse the default
marker or create a new marker by selecting + add type. Choose a name and color for your new marker
type and make sure to set the type to TYPE_track. Confirm your changes by pressing save. To add
more tracking types select + add type and repeat the procedure.

Fig. 3.2: Figure 1 | Defining a marker for tracking

4. Navigating the dataset

• Navigating the current frame:

right mouse button (hold) - to pan the image

mouse wheel - zoom the image

F - fit to view

W - full screen mode

H - hide time line

See General

• Navigating the dataset:

left & right cursor keys to go one frame forward and backward

– Jump a specified set of frames with the numbad keys. See Jumping Frames

– Use the frame and time navigation slider to by clicking or dragging the cursor to the desired
position.

– Jump to a specific frame by clicking on the frame counter and entering the desired frame number

10 Chapter 3. Tutorial

clickpoints Documentation, Release 1.1

– Press to play the dataset with the specifed frame rate or as fast as feasible.

Note: Due to the sequential compression of videos, traversing a video backwards is computational expensive. Click-
Points provides a buffer so that the last N frames are stored and can be retrieved without any further computational
cost. The default buffer size can be specified in the config.

Warning: Be careful not to reserve too much RAM for the frame buffer as it will drastically reduce performance!

5. Basic Tracking Procedure

The setup steps are completed, we can begin to mark some tracks.

1. Activite the type of marker you want to use by clicking on the label “bird” or press the associated
number key.

2. Set the first marker by clicking on the image.

3. Switch to the next frame using the right cursor key.

4. The track now shows up with reduced opacity, indicating there is no marker for the current frame.

5. Upon dragging the marker (left click & hold) to the current position (release) a line indicates the
connection to the last position. The track shows up with full opacity again.

6. If a frame is skipped, the marker can be dragged as usual but no connecting line will appear. Indi-
cating a fragmentation of the track.

7. To create a second track, repeat step 1.

8. Markers are automatically save upon frame change or by pressing the S key.

Fig. 3.3: Figure 2 | Track States
A - Track without update in current frame B - Track with update in current frame C - Track with missing marker

6. “Connect-nearest” Tracking Mode

For low density tracks ClickPoints provides the “connect nearest” mode. Clicking on the image will automatically
connect the new marker to the closest Track in the last frame. Speeding up tracking for low track density scenes. The
dragging of markers is still support and is usefull for intersecting tracks.

To activate “connect nearest” mode, set the config parameter tracking_connect_nearest = True.

See ConfigFiles for more details.

3.3. Manual Tracking 11

clickpoints Documentation, Release 1.1

7. Important Controls

A list of useful controls for labeling tracks. Connect-nearest mode extends the list of default controls

• default left click - create new track (default mode) ctrl + left click - remove marker right
click - open marker menu, see XXXXX

• connect-nearest mode left click - place marker, autoconnect to nearest track alt + left click -
create new track shift + ‘‘left click‘ - place marker & load next frame

8. Advances Options

• Use SmartText to display additional information

See SmartText

Example: Display Track IDs

– open the marker menu

– navigate to “bird” marker type

– edit the text field by inserting

$track_id

All current markers of the type bird now display their internal track ID

• Use Styles to modify the display of markers and tracks

See Marker Styles

Example: Change track point display

– open the marker menu

– navigate to “bird” marker type

– edit the style field by inserting

{"track-line-style": "dash", "track-point-shape": "none"}

All tracks of the type bird now are displayed with dashed lines and without track points

Taking Measurements

How to perform quick measurements with ClickPoints and SmartText Markers

12 Chapter 3. Tutorial

clickpoints Documentation, Release 1.1

Fig. 3.4: Figure 3 | Tracks with SmartText ID

3.4. Taking Measurements 13

clickpoints Documentation, Release 1.1

Fig. 3.5: Figure 3 | Tracks with modified style

14 Chapter 3. Tutorial

CHAPTER 4

Modules

The modules are the different functions of the ClickPoints program. They can be accessed by the icons in the upper
panel.

Fig. 4.1: The icon panel where all modules can be accessed.

Timeline

ClickPoints provides two timelines for navigation, a frame based and a timestamp based timeline. The frame based
timeline is used by default, the timestamp timeline can be activated if time information of the displayed files is avail-
able. Time information extraction is implemented for the filename, the EXIF or TIFF headers.

Frame Timeline

The timeline is an interface at the bottom of the screen which displays range of currently loaded frames and allows for

navigation through these frames. It can be displayed by clicking on .

To start/stop playback use the playback button at the left of the timeline or press Space. The label next to it displays
which frame is currently displayed and how many frames the frame list has in total. The time bar has one slider to
denote the currently selected frame and two triangular marker to select start and end frame of the playback. The keys
b and n set the start/end marker to the current frame. The two tick boxes at the right contain the current frame rate and
the number of frames to skip during playback between each frame. To go directly to a desired frame simply click on
the frame display (left) and enter the frame number.

Each frame which has selected marker or masks is marked with a green tick mark (see Marker and Mask) and each
frame marked with an annotation (see Annotations) is marked with a red tick. To jump to the next annotated frame
press Ctrl+Left or Ctrl+Right.

15

clickpoints Documentation, Release 1.1

Fig. 4.2: Frame Timeline example showing tick marks for marker and annotations.

Config Parameter

• fps = (int, value >= 0) if not 0 overwrite the frame rate of the video

• play_start = (float)

– > 1: at which frame to start playback at what

– 0 > value < 1: fraction of the video to start playback

• play_end =

– > 1: at which frame to start playback at what

– 0 > value < 1: fraction of the video to start playback

• playing = (bool) whether to start playback at the program start

• timeline_hide = (bool) whether to hide the timeline at the program start

Keys

• H - hide control elements

• Space - run/pause

• Crtl + Left - previous image with marker or annotation

• Ctrl + Right - nextimage with marker or annotation

Date Timeline

The date timeline displays the timestamps of the loaded data set. To navigate to desired time point simply drag the
current position marker or click on the point on the date timeline. The timeline can be panned and zoomed by holding

16 Chapter 4. Modules

clickpoints Documentation, Release 1.1

Fig. 4.3: Date Timeline example

the left mouse button (pan) und the mouse wheel (zoom). It aims to make it easier to get an idea of the time distribution
of the data set, to find sections of missing data and facilitate navigation by a more meaningful metric than frames.

The extraction of timestamps by filename is fast than by EXIF. If you plan to repeatedly open files, without using a
.cdb to store the time stamps, renaming them once might be beneficial. A list of timestamp search strings can be
specified in the confing file as shown in the code example below. As the search will be canceled after the first match it
is necessary to order the the search strings by decreasing complexity.

Recommended naming template: %Y%m%d-%H%M%S-%f_Location_Camera.type

Config Parameter

• datetimeline_show = (bool) enable or disable the date timeline by setting this value to True or False

• timestamp_formats = (list of strings) list of match strings for images, with decreasing complexity

• timestamp_formats2 = (list of strings)

list of match strings for videos with 2 timestamps, with decreasing complexity

default values:
for image formats with 1 timestamp
timestamp_formats = [r'%Y%m%d-%H%M%S-%f', # e.g. 20160531-120011-2 with
→˓fraction of second

r'%Y%m%d-%H%M%S'] # e.g. 20160531-120011
for video formats with 2 timestamps (start & end)
timestamp_formats2 = [r'%Y%m%d-%H%M%S_%Y%m%d-%H%M%S']

GammaCorrection

The gamma correction is a slider box in the right bottom corner which allows to change the brightness and gamma of

the currently displayed image. It can be opened by clicking on .

The box in the bottom right corner shows the current gamma and brightness adjustment. Moving a slider changes the
display of the currently selected region in the images. The background of the box displays a histogram of brightness
values of the current image region and a red line denoting the histogram transform given by the gamma and brightness
adjustment. Pressing update the key G sets the currently visible region of the image as the active region for the
adjustment. Especially for large images it increases performance significantly if only a portion of the image is adjusted.
A click on reset resets gamma and brightness adjustments.

4.2. GammaCorrection 17

clickpoints Documentation, Release 1.1

Fig. 4.4: An example gamma correction.

Fig. 4.5: The same image for different gamma values or 1, 0.5 and 1.5.

18 Chapter 4. Modules

clickpoints Documentation, Release 1.1

Gamma

The gamma value changes how bright and dark regions of the images are treated. A low gamma value (<1) brightens
the dark regions up while leaving the bright regions as they are. A high gamma value (>1) darkens the dark regions of
the image while leaving the bright regions as they are.

Brightness

Fig. 4.6: The same image for different brightness values, where once the lower and once the upper range was adjusted.

The brightness can be adjusted by selecting the Max and Min values. Increasing the Min value darkens the image
by setting the Min value (and everything below) to zero intensity. Decreasing the Max value brightens the image by
setting the Max value (and everything above) to maximum intensity.

Keys

• G: update rect

VideoExporter

The video exporter allows for the export of parts of the currently loaded images as a video, image sequence of gif file.

It can be opened useing the or by pressing z. An dialog will open, which allows to select an output filename for
a video, an image sequence (which has to contain a %d number placeholder) or a gif file. Frames are exported starting
from the start marker in the timeline to the end marker in the timeline. The framerate is also taken from the timeline.
Images are cropped according to the current visible image part in the main window.

Keys

• Z: Export Video

Annotations

Annotations are text comments which can include a rating and tags, which is attached to a frame. To annotate a frame

or edit the annotation of a frame press A or and fill in the information in the dialog. The frame will be marked
with a red tick in the timeline. To get a list of all annotated frames press Y. In this list clicking an annotation results in
a jump to the frame of the annotation.

4.3. VideoExporter 19

clickpoints Documentation, Release 1.1

Fig. 4.7: An example of both the annotation editor and the annitation overview window.

Keys

• A: add/edit annotation

• Y: show annotation overview

Marker

Marker are added to a frame to refer to pixel positions. Marker can have different types to mark different objects. They
can also be used in tracking mode to recognize an object over different frames.

The marker editor can be opened by clicking on .

The list of available markers is displayed at the top left corner. A marker type can be selected either by clicking on
its name or by pressing the corresponding number key. A left click in the image places a new marker of the currently
selected type. Existing markers can be dragged with the left mouse button and deleted by clicking on them while
holding the control key.

To save the markers press S or change to the next image, which automatically saves the current markers.

Marker types

A right click on any marker or type opens the Marker Editor window. There types can be created, modified or deleted.

Marker types have a name, which is displayed in the HUD, a color and a mode.

20 Chapter 4. Modules

clickpoints Documentation, Release 1.1

Fig. 4.8: An example image showing three different marker types and some markers placed on the image.

Fig. 4.9: Different marker type modes.

4.5. Marker 21

clickpoints Documentation, Release 1.1

TYPE_Normal results in single markers. TYPE_Rect joins every two consecutive markers as a rectangle. TYPE_Line
joins every two consecutive markers as a line. TYPE_Track specifies that this markers should use tracking mode (see
section Tracking Mode).

Marker display

Pressing T toggles between three different marker displays. If the smallest size is selected, the markers can’t be moved.
This makes it easier to work with a lot of markers on a small area.

Fig. 4.10: The same marker in different size configurations.

Tracking mode

Often objects which occur in one image also occur in another image (e.g. the images are part of a video). Then it is
necessary to make a connection between the object in the first image and the object in the second image. Therefore
ClickPoints features a tracking mode, where markers can be associated between images. It can be enabled using the
TYPE_Track for a marker type. The following images displays the difference between normal mode (left) and tracking
mode (right):

Fig. 4.11: The same marker in normal mode (left) and in tracking mode (right). The track always displays all previous
positions connected with a line, when they are from two consecutive images.

To start a track, mark the object in the first image. Then switch to the next image and the marker from the first image
will still be displayed but only half transparent. To add a second point to the track grab the marker and move it to the
new position of the object. Continue this process through the images where you want to track the object. If the object
didn’t move from the last frame or isn’t visible, an image can be left out, which results in a gap in the track. To remove
a point from the track, click it while holding control.

Marker Editor

The Marker Editor is used to manage marker types. New marker types can be created, existing ones can be modified
or deleted.

22 Chapter 4. Modules

clickpoints Documentation, Release 1.1

Fig. 4.12: The Marker Editor used to create and change marker types, navigate to tracks and marks and delete marker,
tracks and types

4.5. Marker 23

clickpoints Documentation, Release 1.1

Creating Marker Types To create a new marker type open the marke editor via or right click on the marker
display or a marker. Select the +add type field, enter a name, set the marker mode to marker, line, rectangle
or track and choose a color. Further modifications can be achieved via the text and style field, for more details
see the following sections.

Editing Marker Types To edit a marker type, simply select the type from the menu, chenges the desired values and
save the changes by pressing Save

Note: It is NOT possible to change marker types as long as marker objects of this type exist. E.g. you can’t
make lines out of regular markers as they don’t have a second point.

Navigation The editor can also be used to navigate. Selecting a marker will bring you to the frame the marker is
placed in. By clicking on the arrow in front of the type name the marker or track overview unfolds. Selecting a
marker of a track will bring you to the frame it is placed in.

Deleting Types, Tracks and Markers Types, tracks and markers can be removed by selecting the object in the tree
and pressing the Remove button. By removing a marker type all markers and tracks of this type are removed,
removing a track will remove all markers of this track.

Warning: There is no undo button!

Marker Style Definitions

Style definitions can provide additional features to change the appearance of marker. They are inherited from the
marker type to the track and from the track to the marker itself. If no track is present the marker inherits its style
directly from the type. This allows to define type, track and marker specific styles.

Styles can be set using the Marker Editor (right click on any marker or type).

The styles use the JSON format for data storage. The following fields can be used:

• Marker Color - "color": "#FF0000" Defines the color of the marker in hex format. Color can also
be a matplotlib colormap followed optionally by a number (e.g. jet(30)), then that many colors
(default 100) are extracted from the color map and used for the marker/tracks to color every marker/track
differently.

• Marker Shape - "shape": "cross" Defines the shape of the marker.

values: cross (default), circle, rect

• Marker Line Width - "line-width": 1 Defines the line width of the markers symbol (e.g. width of the
circle). Ignored if a filled symbol (e.g. the cross) is used.

• Marker Scale - "scale": 1 Scaling of the marker.

• Marker Transform - "transform": "screen" If the marker should have a fixed size with respect to
the screen or the image.

values: screen (default), image

• Track Line Style - "track-line-style": "solid" The style of the line used to display the track
history.

values: solid (default), dash, dot, dashdot, dashdotdot

• Track Line Width - "track-line-width": 2 The line width of the line used to display the track his-
tory.

24 Chapter 4. Modules

clickpoints Documentation, Release 1.1

• Track Gap Line Style – "track-gap-line-style": dash The style of the line used to display gaps
in the track history.

values: solid, dash (default), dot, dashdot, dashdotdot

• Track Gap Line Width – "track-gap-line-width": 2 The line width of the line used to display
gaps in the track history.

• Track Marker Shape - "track-point-shape": "circle" The marker shape used to display the
track history.

values: circle (default), rect, cross, none

• Track Marker Scale - "track-point-scale": 1 The scaling of markers used to display the track his-
tory.

Style Examples:

{"color": "jet(30)"} # style for providing a marker type with 30 different colors
{"track-line-style": "dash", "track-point-shape": "none"} # change the track style

Marker Text & SmartText

The text field allows to attache text to marker, line, rectangle and track objects. Text properties are inherited from
the marker type to the track and from the track to the marker itself. If no track is present the marker inherits its text
directly from the type. This allows to define type, track and marker specific texts.

Text can be set using the Marker Editor (right click on any marker or type).

ClickPoints provides a SmartText feature, enabling the display of self updating text in to display pre defined values.
SmartText keyword always start with a $ character. The keywords are depending on the type for marker, as explained
in the following overview:

General

/n insert a new line

$marker_id inserts the id of the marker, line or rectangle object

$x_pos inserts the x position of the marker, first marker of a line or top left marker of a rectangle

$y_pos inserts the x position of the marker, first marker of a line or top left marker of a rectangle

Line

$length inserts the length of the line in pixel with 2 decimals.

Rectangle

$area inserts the area of the rectangle in pixel with 2 decimals.

Track

$track_id inserts the track id of the track.

Text Examples:

regular Text
Marker: "Hello World!" # shows the text Hello World!

SmartText
Track: "ID_$track_id" # shows the track ID

4.5. Marker 25

clickpoints Documentation, Release 1.1

Line: "$x_pos | $y_pos \n$length px" # shows the x & y coordinate and
→˓length
Rect: "ID_$marker_id\n$x_pos | $y_pos \n$area px" # shows the object_id, its x & y
→˓coordinate and area

Mask

A mask can be painted to mark regions in the image with a paint brush. The mask editor can be opened by clicking on

.

A list of available mask colors is displayed in the top right corner. Switching to paint mode can be done using the
key P, pressing it again switches back to marker mode. Colors can be selected by clicking on its name or pressing
the corresponding number key. Holding the left mouse button down draws a line in the mask using the selected color.
To save the mask press S or change to the next image, which automatically saves the current mask. The mask type
delete acts as an eraser and allows to remove labeled regions.

Define colors

A right click on a color name opens the mask editor menu, which allows the creation, modification and deletion of
mask types. Every mask type consists of a name and a color.

Brush size

The brush radius can be de- and increased using the keys - and +.

26 Chapter 4. Modules

clickpoints Documentation, Release 1.1

Fig. 4.13: An image where 7 regions have been marked with different masks.

Color picker

The color can alternatively to selection via number buttons or a click on the names be selected by using K to select the
color which is currently below the cursor.

Mask transparency

The transparency of the mask can be adjusted with the keys I and O.

Mask update

Updating masks can be slow if the images are very large. To enable fast painting of large masks, ClickPoints can
disable the automatic updates of the mask by disabling the option Auto Mask Update. If automatic updates are
disabled the key M redraws the currently displayed mask.

Config Parameter

• auto_mask_update = whether to update the mask display after each stroke or manually by key press

• draw_types = [[0,[255,0,0]] specifies what categories to use for mask drawing. Every category is
an array with two entries: index and color.

Keys

• 0-9: change brush type

4.6. Mask 27

clickpoints Documentation, Release 1.1

• K: pick color of brush

• -: decrease brush radius

• +: increase brush radius

• O: increase mask transparency

• I: decrease mask transparency

• M: redraw the mask

Info Hud

Fig. 4.14: Example of the info hud displaying time and exposure exif data from a jpg file.

This info hud can display additional information for each image. Information can be obtained from the filename, jpeg
exif information or tiff metadata or be provided by an external script.

The text can be set using the options dialog. Placeholders for additional information are written with curly brackets
{}. The keyword from the source (regex, exif or meta) is followed by the name of the information in brackets
[], e.g. {exif[rating]}. If the text is set to @script the info hud can be filled using an external script. Use
\n to start a new line.

To extract data from the filename a regular expression with named fields has to be provided.

Examples

28 Chapter 4. Modules

clickpoints Documentation, Release 1.1

Data from filename

file: "penguins_5min.jpg"

Info Text: "Animal: {regex[animal]} Time: {regex[time]}"
Filename Regex: '(?P<animal>.+?[^_])_(?P<time>.+)min'

Output: "Animal: penguin Time: 5"

Data from exif

file: "P1000236.jpg"

Info Text: "Recording Time: {exif[DateTime]} Exposure: {exif[ExposureTime]}"

Output: "Recording Time: 2016:09:13 10:31:13 Exposure: (10, 2360)"

The keys can be any field of the jpeg exif header as e.g. shown at http://www.exiv2.org/tags.html

Data from meta

file: "20160913_134103.tif"

Info Text: "Magnification: {meta[magnification]} PixelSize: {meta[pixelsize]}"

Output: "Magnification: 10 PixelSize: 6.45"

The values presented in the meta field of tiff files varies by the tiff writer. ClickPoints can only access tiff meta data
written in the json format in the tiff meta header field, as done by the tifffile python package.

Data from script

Info Text: "@script"

and a script file listening to the PreLoadImageEvent should set the text with com.updateHUD. This script
should be started via the script launcher and could look like this:

1 from __future__ import print_function, division
2 import os
3 import numpy as np
4 import socket
5 import select
6

7 import clickpoints
8

9 start_frame, database, port = clickpoints.GetCommandLineArgs()
10 com = clickpoints.Commands(port, catch_terminate_signal=True)
11

12 def displayMetaInfo(ans):
13 # print('in function:',ans)
14 command, fullname, framenr = ans[0].split(' ', 2)
15 fpath, fname = os.path.split(fullname)
16 com.updateHUD(framenr+" "+fullname)

4.7. Info Hud 29

http://www.exiv2.org/tags.html

clickpoints Documentation, Release 1.1

17

18 # input
19 HOST = "localhost"
20 PORT = port
21 BROADCAST_PORT = PORT + 1
22

23 # broadcast socket to listen to
24 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
25 sock.setblocking(0)
26 sock.bind(('127.0.0.1', BROADCAST_PORT))
27

28 last_img_nr = -1
29 # main loop
30 while True:
31 ready_to_read, ready_to_write, in_error = select.select([sock], [], [], 0)
32

33 # wait for incomming signal
34 if ready_to_read:
35 ans = sock.recvfrom(1024)
36

37 # split information
38 img_nr = np.int(ans[0].split()[2])
39

40 if ans[0].startswith('PreLoadImageEvent') and img_nr != last_img_nr:
41 # print("nr is:",img_nr)
42 displayMetaInfo(ans)
43 last_img_nr = img_nr
44

45 # annoying buffer part
46 # read out and thereby delete all remaining entries
47 last_message = ""
48 messages_pending = False
49 ready_to_read, ready_to_write, in_error = select.select([sock], [], [], 0)
50 if ready_to_read:
51 messages_pending = True
52 while messages_pending:
53 ready_to_read, ready_to_write, in_error = select.select([sock],

→˓[], [], 0)
54 # clear incomming buffer
55 if ready_to_read:
56 tmp = sock.recvfrom(1024)
57 # print('message pending', tmp)
58 if tmp[0].startswith('PreLoadImageEvent'):
59 last_message = tmp
60 # print('lastmsg:',last_message)
61 else:
62 messages_pending = False
63 # make sure last message is displayed
64 if not last_message == ans and not last_message == '' and img_

→˓nr != last_img_nr:
65 print("reached this")
66 displayMetaInfo(last_message)
67 last_message = ''
68 last_img_nr = img_nr

30 Chapter 4. Modules

CHAPTER 5

Add-ons

Add-ons are helpful scripts which are not part of the main ClickPoints program, but can be loaded on demand to do
some evaluation task.

They can be loaded by clicking on and loading a the .py of the add-on. ClickPoints already comes with a
couple of add-ons, but it is easy to add your own or extend existing ones.

Each addon will be assigned to a key from F12 downwards (F12, F11, F10 and so on). Hitting this key will start
the addon with access to the current project database and the current ClickPoints instances. Hitting this key again will
stop the addon again.

To configure ClickPoints to already have scripts loaded on startup, you can define them in the
ConfigClickPoints.txt file as launch_scripts =.

Tracking

This add-on takes markers in one image and tries to find the corresponding image parts in the subsequent images.

To use it, open a ClickPoints session and add the add-on Track.py by clicking on .

31

clickpoints Documentation, Release 1.1

Create a marker type with mode TYPE_Track. Mark every object which should be tracked with a marker of this type.
Then hit F12 (or the button you assigned the Track.py to) and watch the objects to be tracked. You can at any point
hit the key again to stop the tracking. If the tracker has made errors, you can move the marker by hand and restart the
tracking from the new position.

The algorithm uses the position using a sparse iterative Lucas-Kanade optical flow algorithm [1].

Attention: If the markers are not in a TYPE_Tracking type, they are not tracked by Track.py. Also maker
which already have been tracked are only tracked again, if they were moved in ClickPoints.

References

Drift Correction

This add-on takes a region in the image and tries to find it in every image. The offset saved for every image to correct
for drift in the video.

To use it, open a ClickPoints session and add the add-on DriftCorrection.py by clicking on .

When you first start the script a marker type named drift_rect is created. Use this type to select a region in the
image which remains stable over the course of the video. Start the drift correction script by using F12 (or the key the
script is connected to). The drift correction can be stopped and restarted at any time using the key again.

Cell Detector

This add-on is designed to take a microscope image of fluorescently labeled cell nucleii and find the coordinates of
every cell.

To use it, open a ClickPoints session and add the add-on CellDetector.py by clicking on .

Start the cell detector script by using F12 (or the key the script is connected to). All found cell nucleii will be labeled
with a marker.

Attention: The Cell Detector won’t work for cells which are too densely clustered. But ClickPoints allows you
to review and adjust the results if some cells were not detected.

Grab Plot Data

This add-on helps to retrieve data from plots.

To use it, open a ClickPoints session and add the add-on GrabPlotData.py by clicking on .

Sometimes it is useful to extract data from plotted results found in publications to compare them with own results
or simulations. ClickPoints therefore provides the add-on “GrabPlotData”. It uses three marker types. The types
“x_axis” and “y_axis” should be used to mark the beginning and end of the x and y axis of the plot. Markers should
be assigned a text containing the value which is associated with this point on the axis. These axis markers are used

32 Chapter 5. Add-ons

clickpoints Documentation, Release 1.1

Fig. 5.1: An image of cell nuclei before and after executing the Cell Detector addon.

to remap the pixel coordinates of the “data” markers to the values provided by the axis. These remapped values are
stored in a ”.txt” file that has the same name as the image.

Attention: This can only be used if the axe is not scaled logarithmically. Only linear axes are supported.

5.4. Grab Plot Data 33

clickpoints Documentation, Release 1.1

Fig. 5.2: The two axis are marked with the corresponding markers and the data points with the data markers. The start
and end points of the axis are assigned a text containing the corresponding axis value.

34 Chapter 5. Add-ons

CHAPTER 6

Examples

The examples provide some usage examples of ClickPoints to demonstrate its various functionalities and how data can
be processed with ClickPoints and later easily evaluated with ClickPoints.

To kept the download size of ClickPoints down, the examples are kept in a separate repository. They can be down-
loaded here.

Count Penguins

Fig. 6.1: Left: image of clickpoints to count penguins. Right: number of penguins counted.

35

https://bitbucket.org/fabry_biophysics/clickpointsexamples/get/tip.zip

clickpoints Documentation, Release 1.1

In the example, we show how the ClickPoints can be used to count penguins animals in an image.

The example contains some images recorded with a GoPro Hero 2 camera, located at the Baie du Marin King penguin
colony on Possession Island of the Crozet Archipelago [1]. Two marker types where added in ClickPoints to count
the adult and juvenile animals.

The the counts can be evaluated using a small script:

1 import matplotlib.pyplot as plt
2 import clickpoints
3

4 # open database
5 db = clickpoints.DataFile("count.cdb")
6

7 # iterate over images
8 for index, image in enumerate(db.getImages()):
9 # get count of adults in current image

10 marker = db.getMarkers(image=image, type="adult")
11 plt.bar(index, marker.count(), color='b', width=0.3)
12

13 # get count of juveniles in current image
14 marker = db.getMarkers(image=image, type="juvenile")
15 plt.bar(index+0.3, marker.count(), color='r', width=0.3)
16

17 # display the plot
18 plt.show()

References

Flourescence intensities in plant roots

Fig. 6.2: Left: image of a plant root in ClickPoints. Right: fluorescence intensities of the cells over time.

36 Chapter 6. Examples

clickpoints Documentation, Release 1.1

In the example, we show how the mask panting feature of ClickPoints can be used to evaluate fluorescence intensities
in microscope recordings.

Images of an Arabidopsis thaliana root tip, obtained using a two-photon confocal microscope [1], recorded at 1 min
time intervals are used. The plant roots expressed a photoactivatable green fluorescent protein, which after activation
with a UV pulse diffuses from the activated cells to the neighbouring cells.

For each time step a mask is painted to cover each cell in each time step.

The fluorescence intensities be evaluated using a small script:

1 from __future__ import division, print_function
2 import re
3 import numpy as np
4 from matplotlib import pyplot as plt
5

6 # connect to ClickPoints database
7 # database filename is supplied as command line argument when started from ClickPoints
8 import clickpoints
9 start_frame, database, port = clickpoints.GetCommandLineArgs()

10 db = clickpoints.DataFile(database)
11 com = clickpoints.Commands(port, catch_terminate_signal=True)
12

13 # get images and mask_types
14 images = db.getImages()
15 mask_types = db.getMaskTypes()
16

17 # regular expression to get time from filename
18 regex = re.compile(r".*(?P<experiment>\d*)-(?P<time>\d*)min")
19

20 # initialize arrays for times and intensities
21 times = []
22 intensities = []
23

24 # iterate over all images
25 for image in images:
26 print("Image", image.filename)
27 # get time from filename
28 time = float(regex.match(image.filename).groupdict()["time"])
29 times.append(time)
30

31 # get mask and green channel of image
32 mask = image.mask.data
33 green_channel = image.data[:, :, 1]
34

35 # sum the pixel intensities for every channel
36 intensities.append([np.mean(green_channel[mask == mask_type.index]) for mask_type

→˓in mask_types])
37

38 # convert lists to numpy arrays
39 intensities = np.array(intensities).T
40 times = np.array(times)
41

42 # iterate over cells
43 for mask_type, cell_int in zip(mask_types, intensities):
44 plt.plot(times, cell_int, "-s", label=mask_type.name)
45

46 # add legend and labels
47 plt.legend()

6.2. Flourescence intensities in plant roots 37

clickpoints Documentation, Release 1.1

48 plt.xlabel("time (min)")
49 plt.ylabel("mean intensity")
50 # display the plot
51 plt.show()

References

Supervised Tracking of Fiducial Markers in Magnetic Tweezer Mea-
surements

Fig. 6.3: Left: the image of beads on cells loaded in ClickPoints. Right: displacement of beads.

In the example, we show how the ClickPoints addon Track.py can be used to track objects in an image and how the
resulting tracks can later on be used to calculate displacements. [1]

The data we show in this example are measurements of a magnetic tweezer, which uses a magnetic field to apply
forces on cells. The cell is additionally tagged with non magnetic beads, with are used as fiducial markers.

The images can be opened with ClickPoints and every small bead (the fiducial markers) is marked with a marker of
type tracks. Then the Track.py addon is started to finde the position of these beads in the subsequent images.

The tracks can then be evaluated using a small script:

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # connect to ClickPoints database
5 # database filename is supplied as command line argument when started from ClickPoints
6 import clickpoints
7 start_frame, database, port = clickpoints.GetCommandLineArgs()
8 db = clickpoints.DataFile(database)
9

10 # get all tracks
11 tracks = db.getTracks()
12

13 # iterate over all tracks
14 for track in tracks:
15 # get the points

38 Chapter 6. Examples

clickpoints Documentation, Release 1.1

16 points = track.points_corrected
17 # calculate the distance to the first point
18 distance = np.linalg.norm(points[:, :] - points[0, :], axis=1)
19 # plot the displacement
20 plt.plot(track.frames, distance, "-o")
21

22 # show the plot
23 plt.xlabel("# frame")
24 plt.ylabel("displacement (pixel)")
25 plt.show()

References

Using ClickPoints for Visualizing Simulation Results

Fig. 6.4: Left: Tracks of the random walk simulation in ClickPoints. Right: Tracks plotted all starting from (0, 0).

Here we show how ClickPoints can be apart from viewing and analyzing images also be used to store simulation
results in a ClickPoints Project file. This has the advantages that the simulation can later be viewed in ClickPoints,
with all the features of playback, zooming and panning. Also the coordinates of the objects used in the simulation can
later be accessed through the ClickPoints Project file.

This simple example simulates the movement of 10 object which follow a random walk.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 import clickpoints
4 import io
5

6.4. Using ClickPoints for Visualizing Simulation Results 39

clickpoints Documentation, Release 1.1

6 # Simulation parameters
7 N = 10
8 size = 100
9 size = 100

10 frame_count = 100
11

12 # create new database
13 db = clickpoints.DataFile("sim.cdb", "w")
14

15 # Create a new marker type
16 type_point = db.setMarkerType("point", "#FF0000", mode=db.TYPE_Track)
17

18 # Create track instances
19 tracks = [db.setTrack(type_point) for i in range(N)]
20

21 # Create initial positions
22 points = np.random.rand(N, 2)*size
23

24 # iterate
25 for i in range(frame_count):
26 print(i)
27 # Create a new frame
28 image = db.setImage("frame_%03d" % i, width=size, height=size)
29

30 # Move the positions
31 points += np.random.rand(N, 2)-0.5
32

33 # Save the new positions
34 db.setMarkers(image=image, x=points[:, 0], y=points[:, 1], track=tracks)
35

36 # plot the results
37 for track in tracks:
38 plt.plot(track.points[:, 0], track.points[:, 1], '-')
39 plt.xlim(0, size)
40 plt.ylim(size, 0)
41 plt.show()

40 Chapter 6. Examples

CHAPTER 7

Database API

ClickPoints comes with a powerful API which enables access from within python to ClickPoints Projects which are
stored in a .cdb ClickPoints SQLite database.

To get started reading and writing to a database use:

1 import clickpoints
2 db = clickpoints.DataFile("project.cdb")

This will open an existing project file called project.cdb.

Note: The Examples section demonstrates the use of the API with various examples and provides a good starting
point to write custom evaluations.

Attention: To be able to use the API, the clickpoints package has to be installed! If a ImportError: No
module named clickpoints error is raised, you have to install the package first. Go to clickpointspackage
in your clickpoints directory and execute python setup.py develop there.

Database Models

The .cdb file consists of multiple SQL tables in which it stores its information. Each table is represented in the API as
a peewee model. Users which are not familiar can use the API without any knowledge of peewee, as the API provides
all functions necessary to access the data. For each table a get (retrieve entries), set (add and change entries) and
delete (remove entries) function is provided. Functions with a plural name always work on multiple entries at once
and all arguments can be provided as single values or arrays if multiple entries should be affected.

The tables are: Meta, Path, Image, Offset, Track, MarkerType, Marker, Line, Rectangle, Mask,
MaskType, Annotation, Tag, TagAssociation.

41

clickpoints Documentation, Release 1.1

class Meta
Stores key value pairs containing meta information for the ClickPoints project.

Attributes:

• key (str, unique) - the key

• value (str) - the value for the key

class Path
Stores a path. Referenced by each image entry.

See also: getPath(), getPaths(), setPath(), deletePaths().

Attributes:

• path (str, unique) - the path

• images (list of Image) - the images with this path.

class Image
Stores an image.

See also: getImage(), getImages(), getImageIterator(), setImage(), deleteImages().

Attributes:

• filename (str, unique) - the name of the file.

• ext (str) - the extension of the file.

• frame (int) - the frame of the file (0 for images, >= 0 for images from videos).

• external_id (int) - the id of the file entry of a corresponding external database. Only used when
ClickPoints is started from an external database.

• timestamp (datetime) - the timestamp associated to the image.

• sort_index (int, unique) - the index of the image. The number shown in ClickPoints next to the time
line.

• width (int) - None if it has not be set, otherwise the width of the image.

• height (int) - None if it has not be set, otherwise the height of the image.

• path (Path) - the linked path entry containing the path to the image.

• offset (Offset) - the linked offset entry containing the offsets stored for this image.

• markers (list of Marker) - a list of marker entries for this image.

• lines (list of Line) - a list of line entries for this image.

• rectangles (list of Rectangle) - a list of rectangle entries for this image.

• mask (Mask) - the mask entry associated with the image.

• data (array) - the image data as a numpy array. Data will be loaded on demand and cached.

• data8 (array, uint8) - the image data converted to unsigned 8 bit integers.

• getShape() (list) - a list containing height and width of the image. If they are not stored in the database
yet, the image data has to be loaded.

class Offset
Offsets associated with an image.

Attributes:

42 Chapter 7. Database API

clickpoints Documentation, Release 1.1

• image (Image) - the associated image entry.

• x (int) - the x offset

• y (int) - the y offset

class Track
A track containing multiple markers.

See also: getTrack(), getTracks(), setTrack(), deleteTracks().

Attributes:

• style (str) - the style for this track.

• text (str) - an additional text associated with this track. It is displayed next to the markers of this track
in ClickPoints.

• hidden (bool) - whether the track should be displayed in ClickPoints.

• points (array) - an Nx2 array containing the x and y coordinates of the associated markers.

• points_corrected (array) - an Nx2 array containing the x and y coordinates of the associated markers
corrected by the offsets of the images.

• markers (list of Marker) - a list containing all the associated markers.

• times (list of datetime) - a list containing the timestamps for the images of the associated markers.

• frames (list of int) - a list containing all the frame numbers for the images of the associated markers.

• image_ids (list of int) - a list containing all the ids for the images of the associated markers.

class MarkerType
A marker type.

See also: getMarkerTypes(), getMarkerType(), setMarkerType(), deleteMarkerTypes().

Attributes:

• name (str, unique) - the name of the marker type.

• color (str) - the color of the marker in HTML format, e.g. #FF0000 (red).

• mode (int) - the mode, hast to be either: TYPE_Normal, TYPE_Rect, TYPE_Line or TYPE_Track

• style (str) - the style of the marker type.

• text (str) - an additional text associated with the marker type. It is displayed next to the markers of
this type in ClickPoints.

• hidden (bool) - whether the markers of this type should be displayed in ClickPoints.

• markers (list of Marker) - a list containing all markers of this type. Only for TYPE_Normal and
TYPE_Track.

• lines (list of Line) - a list containing all lines of this type. Only for TYPE_Line.

• markers (list of Rectangle) - a list containing all rectangles of this type. Only for TYPE_Rect.

class Marker
A marker.

See also: getMarker(), getMarkers(), setMarker(), setMarkers(), deleteMarkers().

Attributes:

• image (Image) - the image entry associated with this marker.

7.1. Database Models 43

clickpoints Documentation, Release 1.1

• x (int) - the x coordinate of the marker.

• y (int) - the y coordinate of the marker.

• type (MarkerType) - the marker type.

• processed (bool) - a flag that is set to 0 if the marker is manually moved in ClickPoints, it can be set
from an add-on if the add-on has already processed this marker.

• style (str) - the style definition of the marker.

• text (str) - an additional text associated with the marker. It is displayed next to the marker in Click-
Points.

• track (Track) - the track entry the marker belongs to. Only for TYPE_Track.

• correctedXY() (array) - the marker position corrected by the offset of the image.

• pos() (array) - an array containing the coordinates of the marker: [x, y].

class Line
A line.

See also: getLine(), getLines(), setLine(), setLines(), deleteLines().

Attributes:

• image (Image) - the image entry associated with this line.

• x1 (int) - the first x coordinate of the line.

• y1 (int) - the first y coordinate of the line.

• x2 (int) - the second x coordinate of the line.

• y2 (int) - the second y coordinate of the line.

• type (MarkerType) - the marker type.

• processed (bool) - a flag that is set to 0 if the line is manually moved in ClickPoints, it can be set from
an add-on if the add-on has already processed this line.

• style (str) - the style definition of the line.

• text (str) - an additional text associated with the line. It is displayed next to the line in ClickPoints.

• correctedXY() (array) - the line positions corrected by the offset of the image.

• pos() (array) - an array containing the coordinates of the line: [x, y].

• length (float) - the length of the line in pixel.

class Rectangle
A rectangle.

See also: getRectangle(), getRectangles(), setRectangle(), setRectangles(),
deleteRectangles().

Attributes:

• image (Image) - the image entry associated with this rectangle.

• x (int) - the x coordinate of the rectangle.

• y (int) - the y coordinate of the rectangle.

• width (int) - the width of the rectangle.

• height (int) - the height of the rectangle.

44 Chapter 7. Database API

clickpoints Documentation, Release 1.1

• type (MarkerType) - the marker type.

• processed (bool) - a flag that is set to 0 if the rectangle is manually moved in ClickPoints, it can be
set from an add-on if the add-on has already processed this line.

• style (str) - the style definition of the rectangle.

• text (str) - an additional text associated with the rectangle. It is displayed next to the rectangle in
ClickPoints.

• correctedXY() (array) - the rectangle positions corrected by the offset of the image.

• pos() (array) - an array containing the coordinates of the rectangle: [x, y].

• slice_x() (slice) - a slice object to use the rectangle to cut out a region of an image

• slice_y() (slice) - a slice object to use the rectangle to cut out a region of an image

• area() (float) - the area of the rectangle

class Mask
A mask entry.

See also: getMask(), getMasks(), setMask(), deleteMasks().

Attributes:

• image (Image) - the image entry associated with this marker.

• data (array) - the mask image as a numpy array. Mask types are stored by their index value.

class MaskType
A mask type.

See also: getMaskType(), getMaskTypes(), setMaskType(), deleteMaskTypes().

Attributes:

• name (str) - the name of the mask type.

• color (str) - the color of the mask type in HTML format, e.g. #FF0000 (red).

• index (int) - the integer value used to represent this type in the mask.

class Annotation
An annotation.

See also: getAnnotation(), getAnnotations(), setAnnotation(), deleteAnnotations().

Attributes:

• image (Image) - the image entry associated with this annotation.

• timestamp (datetime) - the timestamp of the image linked to the annotation.

• comment (str) - the text of the comment.

• rating (int) - the value added to the annotation as rating.

• tags (list of Tag) - the tags associated with this annotation.

class Tag
A tag for an Annotation.

See also: getTag(), getTags(), setTag(), deleteTags().

Attributes:

• name (str) - the name of the tag.

7.1. Database Models 45

clickpoints Documentation, Release 1.1

• annotations (list of Annotation) - the annotations associated with this tag.

class TagAssociation
A link between a Tag and an Annotation

Attributes:

• annotation (Annotation) - the linked annotation.

• tag (Tag) - the linked tag.

DataFile

class clickpoints.DataFile(database_filename=None, mode=’r’)
The DataFile class provides access to the .cdb file format in which ClickPoints stores the data for a project.

Parameters

• database_filename (string) – the filename to open

• mode (string, optional) – can be ‘r’ (default) to open an existing database and ap-
pend data to it or ‘w’ to create a new database. If the mode is ‘w’ and the database already
exists, it will be deleted and a new database will be created.

deleteAnnotations(image=None, frame=None, filename=None, timestamp=None, com-
ment=None, rating=None, id=None)

Delete all Annotation entries with the given criteria.

See also: getAnnotation(), getAnnotations(), setAnnotation().

Parameters

• image (int, Image, array_like, optional) – the image/images for which the annotations
should be retrieved. If omitted, frame numbers or filenames should be specified instead.

• frame (int, array_like, optional) – frame number/numbers of the images,
which annotations should be returned. If omitted, images or filenames should be specified
instead.

• filename (string, array_like, optional) – filename of the image/images,
which annotations should be returned. If omitted, images or frame numbers should be
specified instead.

• timestamp (datetime, array_like, optional) – timestamp/s of the annota-
tions.

• comment (string, array_like, optional) – the comment/s of the annota-
tions.

• rating (int, array_like, optional) – the rating/s of the annotations.

• id (int, array_like, optional) – id/ids of the annotations.

Returns rows – the number of affected rows.

Return type int

deleteImages(filename=None, path=None, frame=None, external_id=None, timestamp=None,
width=None, height=None, id=None)

Delete all Image entries with the given criteria.

See also: getImage(), getImages(), getImageIterator(), setImage().

Parameters

46 Chapter 7. Database API

clickpoints Documentation, Release 1.1

• filename (string, array_like, optional) – the filename/filenames of the
image (including the extension)

• path (string, int, Path, array_like optional) – the path string, id or entry of the image to
insert

• frame (int, array_like, optional) – the number/numbers of frames the im-
ages have

• external_id (int, array_like, optional) – an external id/ids for the im-
ages. Only necessary if the annotation server is used

• timestamp (datetime object, array_like, optional) – the times-
tamp/timestamps of the images

• width (int, array_like, optional) – the width/widths of the images

• height (int, optional) – the height/heights of the images

• id (int, array_like, optional) – the id/ids of the images

Returns rows – the number of affected rows.

Return type int

deleteLines(image=None, frame=None, filename=None, x1=None, y1=None, x2=None, y2=None,
type=None, processed=None, text=None, id=None)

Delete all Line entries with the given criteria.

See also: getLine(), getLines(), setLine(), setLines().

Parameters

• image (int, Image, array_like, optional) – the image/s of the lines.

• frame (int, array_like, optional) – the frame/s of the images of the lines.

• filename (string, array_like, optional) – the filename/s of the images of
the lines.

• x1 (int, array_like, optional) – the x coordinate/s of the start of the lines.

• y1 (int, array_like, optional) – the y coordinate/s of the start of the lines.

• x2 (int, array_like, optional) – the x coordinate/s of the end of the lines.

• y2 (int, array_like, optional) – the y coordinate/s of the end of the lines.

• type (string, MarkerType, array_like, optional) – the marker type/s (or name/s) of the
lines.

• processed (int, array_like, optional) – the processed flag/s of the lines.

• text (string, array_like, optional) – the text/s of the lines.

• id (int, array_like, optional) – the id/s of the lines.

Returns rows – the number of affected rows.

Return type int

deleteMarkerTypes(name=None, color=None, mode=None, text=None, hidden=None, id=None)
Delete all MarkerType entries from the database, which match the given criteria.

See also: getMarkerType(), getMarkerTypes(), setMarkerType().

Parameters

• name (str, array_like, optional) – the name of the type

7.2. DataFile 47

clickpoints Documentation, Release 1.1

• color (str, array_like, optional) – hex code string for rgb color of style
“#00ff3f”

• mode (int, array_like, optional) – mode of the marker type (marker 0, rect
1, line 2, track 4)

• text (str, array_like, optional) – display text

• hidden (bool, array_like, optional) – whether the types should be dis-
played in ClickPoints

• id (int, array_like, optional) – id of the MarkerType object

Returns entries – nr of deleted entries

Return type int

deleteMarkers(image=None, frame=None, filename=None, x=None, y=None, type=None, pro-
cessed=None, track=None, text=None, id=None)

Delete all Marker entries with the given criteria.

See also: getMarker(), getMarkers(), setMarker(), setMarkers().

Parameters

• image (int, Image, array_like, optional) – the image/s of the markers.

• frame (int, array_like, optional) – the frame/s of the images of the markers.

• filename (string, array_like, optional) – the filename/s of the images of
the markers.

• x (int, array_like, optional) – the x coordinate/s of the markers.

• y (int, array_like, optional) – the y coordinate/s of the markers.

• type (string, MarkerType, array_like, optional) – the marker type/s (or name/s) of the
markers.

• processed (int, array_like, optional) – the processed flag/s of the mark-
ers.

• track (int, Track, array_like, optional) – the track id/s or instance/s of the markers.

• text (string, array_like, optional) – the text/s of the markers.

• id (int, array_like, optional) – the id/s of the markers.

Returns rows – the number of affected rows.

Return type int

deleteMaskTypes(name=None, color=None, index=None, id=None)
Delete all MaskType entries from the database, which match the given criteria.

See also: getMaskType(), getMaskTypes(), setMaskType().

Parameters

• name (string, array_like, optional) – the name/names of the mask types.

• color (string, array_like, optional) – the color/colors of the mask types.

• index (int, array_like, optional) – the index/indices of the mask types,
which is used for painting this mask types.

• id (int, array_like, optional) – the id/ids of the mask types.

48 Chapter 7. Database API

clickpoints Documentation, Release 1.1

deleteMasks(image=None, frame=None, filename=None, id=None)
Delete all Mask entries with the given criteria.

See also: getMask(), getMasks(), setMask().

Parameters

• image (int, Image, array_like, optional) – the image/images for which the mask should
be deleted. If omitted, frame numbers or filenames should be specified instead.

• frame (int, array_like, optional) – frame number/numbers of the images,
which masks should be deleted. If omitted, images or filenames should be specified in-
stead.

• filename (string, array_like, optional) – filename of the image/images,
which masks should be deleted. If omitted, images or frame numbers should be specified
instead.

• id (int, array_like, optional) – id/ids of the masks.

deletePaths(path_string=None, base_path=None, id=None)
Delete all Path entries with the given criteria.

See also: getPath(), getPaths(), setPath()

Parameters

• path_string (string, optional) – the string/s specifying the paths.

• base_path (string, optional) – return only paths starting with the base_path
string.

• id (int, optional) – the id/s of the paths.

Returns rows – the number of affected rows.

Return type int

deleteRectangles(image=None, frame=None, filename=None, x=None, y=None, width=None,
height=None, type=None, processed=None, text=None, id=None)

Delete all Rectangle entries with the given criteria.

See also: getRectangle(), getRectangles(), setRectangle(), setRectangles().

Parameters

• image (int, Image, array_like, optional) – the image/s of the rectangles.

• frame (int, array_like, optional) – the frame/s of the images of the rectan-
gles.

• filename (string, array_like, optional) – the filename/s of the images of
the rectangles.

• x (int, array_like, optional) – the x coordinate/s of the upper left corner/s of
the rectangles.

• y (int, array_like, optional) – the y coordinate/s of the upper left corner/s of
the rectangles.

• width (int, array_like, optional) – the width/s of the rectangles.

• height (int, array_like, optional) – the height/s of the rectangles.

• type (string, MarkerType, array_like, optional) – the marker type/s (or name/s) of the
rectangles.

7.2. DataFile 49

clickpoints Documentation, Release 1.1

• processed (int, array_like, optional) – the processed flag/s of the rectan-
gles.

• text (string, array_like, optional) – the text/s of the rectangles.

• id (int, array_like, optional) – the id/s of the rectangles.

Returns rows – the number of affected rows.

Return type int

deleteTags(name=None, id=None)
Delete all Tag entries from the database, which match the given criteria. If no criteria a given, delete all.

See also: getTag(), getTags(), setTag().

Parameters

• name (string, array_like, optional) – the name/names of the Tag.

• id (int, array_like, optional) – the id/ids of the Tag.

Returns rows – number of rows deleted

Return type int

deleteTracks(type=None, text=None, hidden=None, id=None)
Delete a single Track object specified by id or all Track object of an type

See also: getTrack(), getTracks(), setTrack().

Parameters

• type (MarkerType, str, array_like, optional) – the marker type or name of the marker
type

• text (str, array_like, optional) – the Track specific text entry

• hidden (bool, array_like, optional) – whether the tracks should be dis-
played in ClickPoints

• id (int, array_like, array_like, optional) – the Track ID

Returns rows – the number of affected rows.

Return type int

getAnnotation(image=None, frame=None, filename=None, id=None, create=False)
Get the Annotation entry for the given image frame number or filename.

See also: getAnnotations(), setAnnotation(), deleteAnnotations().

Parameters

• image (int, Image, optional) – the image for which the annotation should be retrieved.
If omitted, frame number or filename should be specified instead.

• frame (int, optional) – frame number of the image, which annotation should be
returned. If omitted, image or filename should be specified instead.

• filename (string, optional) – filename of the image, which annotation should
be returned. If omitted, image or frame number should be specified instead.

• id (int, optional) – id of the annotation entry.

• create (bool, optional) – whether the annotation should be created if it does not
exist. (default: False)

50 Chapter 7. Database API

clickpoints Documentation, Release 1.1

Returns annotation – the desired Annotation entry.

Return type Annotation

getAnnotations(image=None, frame=None, filename=None, timestamp=None, tag=None, com-
ment=None, rating=None, id=None)

Get all Annotation entries from the database, which match the given criteria. If no criteria a given,
return all masks.

See also: getAnnotation(), setAnnotation(), deleteAnnotations().

Parameters

• image (int, Image, array_like, optional) – the image/images for which the annotations
should be retrieved. If omitted, frame numbers or filenames should be specified instead.

• frame (int, array_like, optional) – frame number/numbers of the images,
which annotations should be returned. If omitted, images or filenames should be specified
instead.

• filename (string, array_like, optional) – filename of the image/images,
which annotations should be returned. If omitted, images or frame numbers should be
specified instead.

• timestamp (datetime, array_like, optional) – timestamp/s of the annota-
tions.

• tag (string, array_like, optional) – the tag/s of the annotations to load.

• comment (string, array_like, optional) – the comment/s of the annota-
tions.

• rating (int, array_like, optional) – the rating/s of the annotations.

• id (int, array_like, optional) – id/ids of the annotations.

Returns entries – a query object containing all the matching Annotation entries in the
database file.

Return type Annotation

getDbVersion()
Returns the version of the currently opened database file.

Returns version – the version of the database

Return type string

getImage(frame=None, filename=None, id=None)
Returns the Image entry with the given frame number.

See also: getImages(), getImageIterator(), setImage(), deleteImages().

Parameters

• frame (int, optional) – the frame number of the desired image, as displayed in
ClickPoints.

• filename (string, optional) – the filename of the desired image.

• id (int, optional) – the id of the image.

Returns image – the image entry.

Return type Image

7.2. DataFile 51

clickpoints Documentation, Release 1.1

getImageIterator(start_frame=0, end_frame=None)
Get an iterator to iterate over all Image entries starting from start_frame.

See also: getImage(), getImages(), setImage(), deleteImages().

Parameters

• start_frame (int, optional) – start at the image with the number start_frame.
Default is 0

• end_frame (int, optional) – the last frame of the iteration (excluded). Default is
None, the iteration stops when no more images are present.

Returns image_iterator – an iterator object to iterate over Image entries.

Return type iterator

Examples

1 import clickpoints
2

3 # open the database "data.cdb"
4 db = clickpoints.DataFile("data.cdb")
5

6 # iterate over all images and print the filename
7 for image in db.GetImageIterator():
8 print(image.filename)

getImages(frame=None, filename=None, ext=None, external_id=None, timestamp=None,
width=None, height=None, path=None, order_by=’sort_index’)

Get all Image entries sorted by sort index. For large databases getImageIterator(), should be used
as it doesn’t load all frames at once.

See also: getImage(), getImageIterator(), setImage(), deleteImages().

Parameters

• frame (int, array_like, optional) – the frame number/s of the image/s as
displayed in ClickPoints (sort_index in the database).

• filename (string, array_like, optional) – the filename/s of the image/s.

• ext (string, array_like, optional) – the extension/s of the image/s.

• external_id (int, array_like, optional) – the external id/s of the image/s.

• timestamp (datetime, array_like, optional) – the timestamp/s of the im-
age/s.

• width (int, array_like, optional) – the width/s of the image/s.

• height (int, array_like, optional) – the height/s of the image/s

• path (int, Path, array_like, optional) – the path/s (or path id/s) of the image/s

• order_by (string, optional) – sort by either ‘sort_index’ (default) or ‘times-
tamp’.

Returns entries – a query object containing all the Image entries in the database file.

Return type array_like

52 Chapter 7. Database API

clickpoints Documentation, Release 1.1

getLine(id)
Retrieve an Line object from the database.

See also: getLines(), setLine(), setLines(), deleteLines().

Parameters id (int) – the id of the line

Returns line – the Line with the desired id or None.

Return type Line

getLines(image=None, frame=None, filename=None, x1=None, y1=None, x2=None, y2=None,
type=None, processed=None, text=None, id=None)

Get all Line entries with the given criteria.

See also: getLine(), setLine(), setLines(), deleteLines().

Parameters

• image (int, Image, array_like, optional) – the image/s of the lines.

• frame (int, array_like, optional) – the frame/s of the images of the lines.

• filename (string, array_like, optional) – the filename/s of the images of
the lines.

• x1 (int, array_like, optional) – the x coordinate/s of the lines start.

• y1 (int, array_like, optional) – the y coordinate/s of the lines start.

• x2 (int, array_like, optional) – the x coordinate/s of the lines end.

• y2 (int, array_like, optional) – the y coordinate/s of the lines end.

• type (string, MarkerType, array_like, optional) – the marker type/s (or name/s) of the
lines.

• processed (int, array_like, optional) – the processed flag/s of the lines.

• text (string, array_like, optional) – the text/s of the lines.

• id (int, array_like, optional) – the id/s of the lines.

Returns entries – a query object which contains all Line entries.

Return type array_like

getMarker(id)
Retrieve an Marker object from the database.

See also: getMarkers(), setMarker(), setMarkers(), deleteMarkers().

Parameters id (int) – the id of the marker

Returns marker – the Marker with the desired id or None.

Return type Marker

getMarkerType(name=None, id=None)
Retrieve an MarkerType object from the database.

See also: getMarkerTypes(), setMarkerType(), deleteMarkerTypes().

Parameters

• name (str, optional) – the name of the desired type

• id (int, optional) – id of the MarkerType object

Returns entries – the MarkerType with the desired name or None.

7.2. DataFile 53

clickpoints Documentation, Release 1.1

Return type array_like

getMarkerTypes(name=None, color=None, mode=None, text=None, hidden=None, id=None)
Retreive all MarkerType objects in the database.

See also: getMarkerType(), setMarkerType(), deleteMarkerTypes().

Parameters

• name (str, array_like, optional) – the name of the type

• color (str, array_like, optional) – hex code string for rgb color of style
“#00ff3f”

• mode (int, array_like, optional) – mode of the marker type (marker 0, rect
1, line 2, track 4)

• text (str, array_like, optional) – display text

• hidden (bool, array_like, optional) – whether the types should be dis-
played in ClickPoints

• id (int, array_like, optional) – id of the MarkerType object

Returns entries – a query object which contains all MarkerType entries.

Return type array_like

getMarkers(image=None, frame=None, filename=None, x=None, y=None, type=None, pro-
cessed=None, track=None, text=None, id=None)

Get all Marker entries with the given criteria.

See also: getMarker(), getMarkers(), setMarker(), setMarkers(),
deleteMarkers().

Parameters

• image (int, Image, array_like, optional) – the image/s of the markers.

• frame (int, array_like, optional) – the frame/s of the images of the markers.

• filename (string, array_like, optional) – the filename/s of the images of
the markers.

• x (int, array_like, optional) – the x coordinate/s of the markers.

• y (int, array_like, optional) – the y coordinate/s of the markers.

• type (string, MarkerType, array_like, optional) – the marker type/s (or name/s) of the
markers.

• processed (int, array_like, optional) – the processed flag/s of the mark-
ers.

• track (int, Track, array_like, optional) – the track id/s or instance/s of the markers.

• text (string, array_like, optional) – the text/s of the markers.

• id (int, array_like, optional) – the id/s of the markers.

Returns entries – a query object which contains all Marker entries.

Return type array_like

getMask(image=None, frame=None, filename=None, id=None, create=False)
Get the Mask entry for the given image frame number or filename.

See also: getMasks(), setMask(), deleteMasks().

54 Chapter 7. Database API

clickpoints Documentation, Release 1.1

Parameters

• image (int, Image, optional) – the image for which the mask should be retrieved. If
omitted, frame number or filename should be specified instead.

• frame (int, optional) – frame number of the image, which mask should be re-
turned. If omitted, image or filename should be specified instead.

• filename (string, optional) – filename of the image, which mask should be
returned. If omitted, image or frame number should be specified instead.

• id (int, optional) – id of the mask entry.

• create (bool, optional) – whether the mask should be created if it does not exist.
(default: False)

Returns mask – the desired Mask entry.

Return type Mask

getMaskType(name=None, color=None, index=None, id=None)
Get a MaskType from the database.

See also: getMaskTypes(), setMaskType(), deleteMaskTypes().

Parameters

• name (string, optional) – the name of the mask type.

• color (string, optional) – the color of the mask type.

• index (int, optional) – the index of the mask type, which is used for painting this
mask type.

• id (int, optional) – the id of the mask type.

Returns entries – the created/requested MaskType entry.

Return type MaskType

getMaskTypes(name=None, color=None, index=None, id=None)
Get all MaskType entries from the database, which match the given criteria. If no criteria a given, return
all mask types.

See also: getMaskType(), setMaskType(), deleteMaskTypes().

Parameters

• name (string, array_like, optional) – the name/names of the mask types.

• color (string, array_like, optional) – the color/colors of the mask types.

• index (int, array_like, optional) – the index/indices of the mask types,
which is used for painting this mask types.

• id (int, array_like, optional) – the id/ids of the mask types.

Returns entries – a query object containing all the matching MaskType entries in the database
file.

Return type array_like

getMasks(image=None, frame=None, filename=None, id=None, order_by=’sort_index’)
Get all Mask entries from the database, which match the given criteria. If no criteria a given, return all
masks.

See also: getMask(), setMask(), deleteMasks().

7.2. DataFile 55

clickpoints Documentation, Release 1.1

Parameters

• image (int, Image, array_like, optional) – the image/images for which the mask should
be retrieved. If omitted, frame numbers or filenames should be specified instead.

• frame (int, array_like, optional) – frame number/numbers of the images,
which masks should be returned. If omitted, images or filenames should be specified
instead.

• filename (string, array_like, optional) – filename of the image/images,
which masks should be returned. If omitted, images or frame numbers should be specified
instead.

• id (int, array_like, optional) – id/ids of the masks.

• order_by (string, optional) – sorts the result according to sort paramter
(‘sort_index’ or ‘timestamp’)

Returns entries – a query object containing all the matching Mask entries in the database file.

Return type Mask

getPath(path_string=None, id=None, create=False)
Get a Path entry from the database.

See also: getPaths(), setPath(), deletePaths()

Parameters

• path_string (string, optional) – the string specifying the path.

• id (int, optional) – the id of the path.

• create (bool, optional) – whether the path should be created if it does not exist.
(default: False)

Returns path – the created/requested Path entry.

Return type Path

getPaths(path_string=None, base_path=None, id=None)
Get all Path entries from the database, which match the given criteria. If no critera a given, return all
paths.

See also: getPath(), setPath(), deletePaths()

Parameters

• path_string (string, path_string, optional) – the string/s specifying
the path/s.

• base_path (string, optional) – return only paths starting with the base_path
string.

• id (int, array_like, optional) – the id/s of the path/s.

Returns entries – a query object containing all the matching Path entries in the database file.

Return type array_like

getRectangle(id)
Retrieve an Rectangle object from the database.

See also: getRectangles(), setRectangle(), setRectangles(),
deleteRectangles().

Parameters id (int) – the id of the rectangle.

56 Chapter 7. Database API

clickpoints Documentation, Release 1.1

Returns rectangle – the Rectangle with the desired id or None.

Return type Rectangle

getRectangles(image=None, frame=None, filename=None, x=None, y=None, width=None,
height=None, type=None, processed=None, text=None, id=None)

Get all Rectangle entries with the given criteria.

See also: getRectangle(), setRectangle(), setRectangles(), deleteRectangles().

Parameters

• image (int, Image, array_like, optional) – the image/s of the rectangles.

• frame (int, array_like, optional) – the frame/s of the images of the rectan-
gles.

• filename (string, array_like, optional) – the filename/s of the images of
the rectangles.

• x (int, array_like, optional) – the x coordinate/s of the upper left corner/s of
the rectangles.

• y (int, array_like, optional) – the y coordinate/s of the upper left corner/s of
the rectangles.

• width (int, array_like, optional) – the width/s of the rectangles.

• height (int, array_like, optional) – the height/s of the rectangles.

• type (string, MarkerType, array_like, optional) – the marker type/s (or name/s) of the
rectangles.

• processed (int, array_like, optional) – the processed flag/s of the rectan-
gles.

• text (string, array_like, optional) – the text/s of the rectangles.

• id (int, array_like, optional) – the id/s of the rectangles.

Returns entries – a query object which contains all Rectangle entries.

Return type array_like

getTag(name=None, id=None)
Get a specific Tag entry by its name or database ID

See also: getTags(), setTag(), deleteTags().

Parameters

• name (str) – name of the tag

• id (int) – id of Tag entry

Returns entries – requested object of class Tag or None

Return type Tag

getTags(name=None, id=None)
Get all Tag entries from the database, which match the given criteria. If no criteria a given, return all.

See also: getTag(), setTag(), deleteTags().

Parameters

• name (string, array_like, optional) – the name/names of the Tag.

• id (int, array_like, optional) – the id/ids of the Tag.

7.2. DataFile 57

clickpoints Documentation, Release 1.1

Returns entries – a query object containing all the matching Tag entries in the database file.

Return type array_like

getTrack(id)
Get a specific Track entry by its database ID.

See also: getTracks(), deleteTracks().

Parameters id (int) – id of the track

Returns entries – requested object of class Track or None

Return type Track

getTracks(type=None, text=None, hidden=None, id=None)
Get all Track entries, optional filter by type

See also: getTrack(), setTrack(), deleteTracks().

Parameters

• type (MarkerType, str, array_like, optional) – the marker type/types or name of the
marker type for the track.

• text (str, array_like, optional) – the Track specific text entry

• hidden (bool, array_like, optional) – whether the tracks should be dis-
played in ClickPoints

• id (int, array_like, optional) – the Track ID

Returns entries – a query object which contains the requested Track.

Return type array_like

max_sql_variables()
Get the maximum number of arguments allowed in a query by the current sqlite3 implementation. Based
on ‘this question ‘_

Returns inferred SQLITE_MAX_VARIABLE_NUMBER

Return type int

setAnnotation(image=None, frame=None, filename=None, timestamp=None, comment=None, rat-
ing=None, id=None)

Insert or update an Annotation object in the database.

See also: getAnnotation(), getAnnotations(), deleteAnnotations().

Parameters

• image (int, Image, optional) – the image of the annotation.

• frame (int, optional) – the frame of the images of the annotation.

• filename (string, optional) – the filename of the image of the annotation.

• timestamp (datetime, optional) – the timestamp of the annotation.

• comment (string, optional) – the text of the annotation.

• rating (int, optional) – the rating of the annotation.

• id (int, optional) – the id of the annotation.

Returns annotation – the created or changed Annotation item.

Return type Annotation

58 Chapter 7. Database API

clickpoints Documentation, Release 1.1

setImage(filename=None, path=None, frame=None, external_id=None, timestamp=None,
width=None, height=None, id=None)

Update or create new Image entry with the given parameters.

See also: getImage(), getImages(), getImageIterator(), deleteImages().

Parameters

• filename (string, optional) – the filename of the image (including the exten-
sion)

• path (string, int, Path, optional) – the path string, id or entry of the image to insert

• frame (int, optional) – the frame number if the image is part of a video

• external_id (int, optional) – an external id for the image. Only necessary if
the annotation server is used

• timestamp (datetime object, optional) – the timestamp of the image

• width (int, optional) – the width of the image

• height (int, optional) – the height of the image

• id (int, optional) – the id of the image

Returns image – the changed or created Image entry

Return type Image

setLine(image=None, frame=None, filename=None, x1=None, y1=None, x2=None, y2=None,
type=None, processed=None, style=None, text=None, id=None)

Insert or update an Line object in the database.

See also: getLine(), getLines(), setLines(), deleteLines().

Parameters

• image (int, Image, optional) – the image of the line.

• frame (int, optional) – the frame of the images of the line.

• filename (string, optional) – the filename of the image of the line.

• x1 (int, optional) – the x coordinate of the start of the line.

• y1 (int, optional) – the y coordinate of the start of the line.

• x2 (int, optional) – the x coordinate of the end of the line.

• y2 (int, optional) – the y coordinate of the end of the line.

• type (string, MarkerType, optional) – the marker type (or name) of the line.

• processed (int, optional) – the processed flag of the line.

• text (string, optional) – the text of the line.

• id (int, optional) – the id of the line.

Returns line – the created or changed Line item.

Return type Line

setLines(image=None, frame=None, filename=None, x1=None, y1=None, x2=None, y2=None,
type=None, processed=None, style=None, text=None, id=None)

Insert or update multiple Line objects in the database.

See also: getLine(), getLines(), setLine(), deleteLines().

7.2. DataFile 59

clickpoints Documentation, Release 1.1

Parameters

• image (int, Image, array_like, optional) – the image/s of the lines.

• frame (int, array_like, optional) – the frame/s of the images of the lines.

• filename (string, array_like, optional) – the filename/s of the images of
the lines.

• x1 (int, array_like, optional) – the x coordinate/s of the start of the lines.

• y1 (int, array_like, optional) – the y coordinate/s of the start of the lines.

• x2 (int, array_like, optional) – the x coordinate/s of the end of the lines.

• y2 (int, array_like, optional) – the y coordinate/s of the end of the lines.

• type (string, MarkerType, array_like, optional) – the marker type/s (or name/s) of the
lines.

• processed (int, array_like, optional) – the processed flag/s of the lines.

• track (int, Track, array_like, optional) – the track id/s or instance/s of the lines.

• text (string, array_like, optional) – the text/s of the lines.

• id (int, array_like, optional) – the id/s of the lines.

Returns success – it the inserting was successful.

Return type bool

setMarker(image=None, frame=None, filename=None, x=None, y=None, type=None, pro-
cessed=None, track=None, style=None, text=None, id=None)

Insert or update an Marker object in the database.

See also: getMarker(), getMarkers(), setMarkers(), deleteMarkers().

Parameters

• image (int, Image, optional) – the image of the marker.

• frame (int, optional) – the frame of the images of the marker.

• filename (string, optional) – the filename of the image of the marker.

• x (int, optional) – the x coordinate of the marker.

• y (int, optional) – the y coordinate of the marker.

• type (string, MarkerType, optional) – the marker type (or name) of the marker.

• processed (int, optional) – the processed flag of the marker.

• track (int, Track, optional) – the track id or instance of the marker.

• text (string, optional) – the text of the marker.

• id (int, optional) – the id of the marker.

Returns marker – the created or changed Marker item.

Return type Marker

setMarkerType(name=None, color=None, mode=None, style=None, text=None, hidden=None,
id=None)

Insert or update an MarkerType object in the database.

See also: getMarkerType(), getMarkerTypes(), deleteMarkerTypes().

60 Chapter 7. Database API

clickpoints Documentation, Release 1.1

Parameters

• name (str, optional) – the name of the type

• color (str, optional) – hex code string for rgb color of style “#00ff3f”

• mode (int, optional) – mode of the marker type (marker 0, rect 1, line 2, track 4)

• style (str, optional) – style string

• text (str, optional) – display text

• hidden (bool, optional) – whether the type should be displayed in ClickPoints

• id (int, optional) – id of the MarkerType object

Returns entries – the created MarkerType with the desired name or None.

Return type object

setMarkers(image=None, frame=None, filename=None, x=None, y=None, type=None, pro-
cessed=None, track=None, style=None, text=None, id=None)

Insert or update multiple Marker objects in the database.

See also: getMarker(), getMarkers(), setMarker(), deleteMarkers().

Parameters

• image (int, Image, array_like, optional) – the image/s of the markers.

• frame (int, array_like, optional) – the frame/s of the images of the markers.

• filename (string, array_like, optional) – the filename/s of the images of
the markers.

• x (int, array_like, optional) – the x coordinate/s of the markers.

• y (int, array_like, optional) – the y coordinate/s of the markers.

• type (string, MarkerType, array_like, optional) – the marker type/s (or name/s) of the
markers.

• processed (int, array_like, optional) – the processed flag/s of the mark-
ers.

• track (int, Track, array_like, optional) – the track id/s or instance/s of the markers.

• text (string, array_like, optional) – the text/s of the markers.

• id (int, array_like, optional) – the id/s of the markers.

Returns success – it the inserting was successful.

Return type bool

setMask(image=None, frame=None, filename=None, data=None, id=None)
Update or create new Mask entry with the given parameters.

See also: getMask(), getMasks(), deleteMasks().

Parameters

• image (int, Image, optional) – the image for which the mask should be set. If omitted,
frame number or filename should be specified instead.

• frame (int, optional) – frame number of the images, which masks should be set.
If omitted, image or filename should be specified instead.

7.2. DataFile 61

clickpoints Documentation, Release 1.1

• filename (string, optional) – filename of the image, which masks should be
set. If omitted, image or frame number should be specified instead.

• data (ndarray, optional) – the mask data of the mask to set. Must have the same
dimensions as the corresponding image, but only one channel, and it should be using the
data type uint8.

• id (int, optional) – id of the mask entry.

Returns mask – the changed or created Mask entry.

Return type Mask

setMaskType(name=None, color=None, index=None, id=None)
Update or create a new a MaskType entry with the given parameters.

See also: getMaskType(), getMaskTypes(), setMaskType(), deleteMaskTypes().

Parameters

• name (string, optional) – the name of the mask type.

• color (string, optional) – the color of the mask type.

• index (int, optional) – the index of the mask type, which is used for painting this
mask type.

• id (int, optional) – the id of the mask type.

Returns entries – the changed or created MaskType entry.

Return type MaskType

setPath(path_string=None, id=None)
Update or create a new Path entry with the given parameters.

See also: getPath(), getPaths(), deletePaths()

Parameters

• path_string (string, optional) – the string specifying the path.

• id (int, optional) – the id of the paths.

Returns entries – the changed or created Path entry.

Return type Path

setRectangle(image=None, frame=None, filename=None, x=None, y=None, width=None,
height=None, type=None, processed=None, style=None, text=None, id=None)

Insert or update an Rectangle object in the database.

See also: getRectangle(), getRectangles(), setRectangles(),
deleteRectangles().

Parameters

• image (int, Image, optional) – the image of the rectangle.

• frame (int, optional) – the frame of the images of the rectangle.

• filename (string, optional) – the filename of the image of the rectangle.

• x (int, optional) – the x coordinate of the upper left corner of the rectangle.

• y (int, optional) – the y coordinate of the upper left of the rectangle.

• width (int, optional) – the width of the rectangle.

62 Chapter 7. Database API

clickpoints Documentation, Release 1.1

• height (int, optional) – the height of the rectangle.

• type (string, MarkerType, optional) – the marker type (or name) of the rectangle.

• processed (int, optional) – the processed flag of the rectangle.

• text (string, optional) – the text of the rectangle.

• id (int, optional) – the id of the rectangle.

Returns rectangle – the created or changed Rectangle item.

Return type Rectangle

setRectangles(image=None, frame=None, filename=None, x=None, y=None, width=None,
height=None, type=None, processed=None, style=None, text=None, id=None)

Insert or update multiple Rectangle objects in the database.

See also: getRectangle(), getRectangles(), setRectangle(), deleteRectangles().

Parameters

• image (int, Image, array_like, optional) – the image/s of the rectangles.

• frame (int, array_like, optional) – the frame/s of the images of the rectan-
gles.

• filename (string, array_like, optional) – the filename/s of the images of
the rectangles.

• x (int, array_like, optional) – the x coordinate/s of the upper left corner/s of
the rectangles.

• y (int, array_like, optional) – the y coordinate/s of the upper left corner/s of
the rectangles.

• width (int, array_like, optional) – the width/s of the rectangles.

• height (int, array_like, optional) – the height/s of the rectangles.

• type (string, MarkerType, array_like, optional) – the marker type/s (or name/s) of the
rectangles.

• processed (int, array_like, optional) – the processed flag/s of the rectan-
gles.

• track (int, Track, array_like, optional) – the track id/s or instance/s of the rectangles.

• text (string, array_like, optional) – the text/s of the rectangles.

• id (int, array_like, optional) – the id/s of the rectangles.

Returns success – it the inserting was successful.

Return type bool

setTag(name=None, id=None)
Set a specific Tag entry by its name or database ID

See also: getTag(), getTags(), deleteTags().

Parameters

• name (str) – name of the tag

• id (int) – id of Tag entry

Returns entries – object of class Tag

7.2. DataFile 63

clickpoints Documentation, Release 1.1

Return type Tag

setTrack(type, style=None, text=None, hidden=None, id=None, uid=None)
Insert or update a Track object.

See also: getTrack(), getTracks(), deleteTracks().

Parameters

• type (MarkerType, str) – the marker type or name of the marker type for the track.

• style – the Track specific style entry

• text – the Track specific text entry

• hidden – wether the track should be displayed in ClickPoints

• id (int, array_like) – the Track ID

Returns track – a new Track object

Return type track object

64 Chapter 7. Database API

CHAPTER 8

Add-on API

ClickPoints allows to easily write add-on scripts. The are called form ClickPoints with command line arguments
specifiying which database to use, at which frame to start and how to communicate with ClikcPoints.

The add-on script should start as follows:

1 import clickpoints
2 start_frame, database, port = clickpoints.GetCommandLineArgs()
3 db = clickpoints.DataFile(database)
4 com = clickpoints.Commands(port, catch_terminate_signal=True)

This will retrieve start_frame, database and port from the command line arguments the script was started
with. When executing the script through the add-on interface, ClickPoints will provide these values. These can then
be used to open the ClickPoints project file and establish a connection to the ClickPoints instance.

Note: The Addons section demonstrates how the add-ons can be used and may serve as a good starting point to write
custom add-ons.

Attention: To be able to use the API, the clickpoints package has to be installed! If a ImportError: No
module named clickpoints error is raised, you have to install the package first. Go to clickpointspackage
in your clickpoints directory and execute python setup.py develop there.

GetCommandLineArgs

clickpoints.GetCommandLineArgs()
Parse the command line arguments for the information provided by ClickPoints, if the script is invoked from
within ClickPoints. The arguments are –start_frame –database and –port.

Returns

65

clickpoints Documentation, Release 1.1

• start_frame (int) – the frame ClickPoints was in when invoking the script. Probably the
evaluation should start here

• database (string) – the filename of the database where the current ClickPoints project is
stored. Should be used with clickpoints.DataFile

• port (int) – the port of the socket connection to communicate with the ClickPoints instance.
Should be used with clickpoints.Commands

Commands

class clickpoints.Commands(port=None, catch_terminate_signal=False)
The Commands class provides an interface for external scripts to communicate with a currently open Click-
Points instance. Communication is done using socket connection. ClickPoints provides the port number for this
connection when calling an external script. Use clickpoints.GetCommandLineArgs to obtain the port number.

Parameters

• port (int, optional) – the port for the socket connection to communicate with Click-
Points. If it is not provided, a dummy connection is used with doesn’t pass any commands.
This behaviour is provided to enable external scripts to run with and without a ClickPoints
instance.

• catch_terminate_signal (bool, optional) – whether a terminate signal from
ClickPoints should directly terminate the script (default) or if only the terminate_signal flag
should be set. This flag can later on be queried with HasTerminateSignal()

CatchTerminateSignal()
Catch the terminate signal when ClickPoints wants to close the script execution. When called at the
beginning of the script, the signal is cached and its status can be queried with HasTerminateSignal. This
can be used for a gentle program termination, where the current progress loop can be finished before
stopping the program execution.

GetImage(value)
Get the currently in ClickPoints displayed image.

Returns

• image (ndarray) – the image data.

• image_id (int) – the image id in the database.

• image_frame (int) – which frame is used if the image is from a video file. 0 if the source
is an image file.

HasTerminateSignal()
Whether or not the program has received a terminate signal form ClickPoints. Can only be used if
CatchTerminateSignal was called before.

Returns terminate_signal – True if ClickPoints has sent a terminate signal.

Return type bool

JumpFrames(value)
Let ClickPoints jump the given amount of frames.

Parameters value (int) – the amount of frame which ClickPoints should jump.

JumpFramesWait(value)
Let ClickPoints jump the given amount of frames and wait for it to complete.

66 Chapter 8. Add-on API

clickpoints Documentation, Release 1.1

Parameters value (int) – the amount of frame which ClickPoints should jump.

JumpToFrame(value)
Let ClickPoints jump to the given frame.

Parameters value (int) – the frame to which ClickPoints should jump.

JumpToFrameWait(value)
Let ClickPoints jump to the given frame and wait for it to complete.

Parameters value (int) – the frame to which ClickPoints should jump.

ReloadMarker(frame=None)
Reloads the marker from the given frame in ClickPoints.

Parameters frame (int) – the frame which ClickPoints should reload.

ReloadMask()
Reloads the current mask file in ClickPoints.

ReloadTypes()
Reloads the marker types.

log(*args)
Print to the ClickPoints console.

Parameters *args (string) – multiple strings to print

updateHUD(value)

8.2. Commands 67

clickpoints Documentation, Release 1.1

68 Chapter 8. Add-on API

CHAPTER 9

Citing ClickPoints

If you use ClickPoints for academic research, you are highly encouraged (though not required) to cite the following
paper:

• Gerum, R., Richter, S., Fabry, B. and Zitterbart, D.P. (2016), “ClickPoints: an expandable toolbox for scientific
image annotation and analysis”. Methods Ecol Evol. doi:10.1111/2041-210X.12702

ClickPoints is developed primarily by academics, and so citations matter a lot to us. Citing ClickPoints also increases
it’s exposure and potential user (and developer) base, which is to the benefit of all users of ClickPoints. Thanks in
advance!

69

http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12702/abstract
http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12702/abstract

clickpoints Documentation, Release 1.1

70 Chapter 9. Citing ClickPoints

CHAPTER 10

Note

If you encounter any bugs or unexpected behaviour, you are encouraged to report a bug in our Bitbucket bugtracker.

71

https://bitbucket.org/fabry_biophysics/clickpoints/issues?status=new&status=open

clickpoints Documentation, Release 1.1

72 Chapter 10. Note

Bibliography

[1] Jean-Yves Bouguet. Pyramidal implementation of the affine lucas kanade feature tracker description of the algo-
rithm. Intel Corporation, 5(1-10):4, 2001.

[1] Celine Le Bohec. Programme 137 ‘ecophy-antavia’ of the french polar institute paul-emile victor (ipev).

[1] Nadja Gerlitz. Dronpa. 2016.

[1] Navid Bonakdar, Richard Gerum, Michael Kuhn, Marina Spörrer, Anna Lippert, Werner Schneider, Katerina E
Aifantis, and Ben Fabry. Mechanical plasticity of cells. Nature Materials, 2016.

73

clickpoints Documentation, Release 1.1

74 Bibliography

Index

A
Annotation (built-in class), 45

C
CatchTerminateSignal() (clickpoints.Commands

method), 66
Commands (class in clickpoints), 66

D
DataFile (class in clickpoints), 46
deleteAnnotations() (clickpoints.DataFile method), 46
deleteImages() (clickpoints.DataFile method), 46
deleteLines() (clickpoints.DataFile method), 47
deleteMarkers() (clickpoints.DataFile method), 48
deleteMarkerTypes() (clickpoints.DataFile method), 47
deleteMasks() (clickpoints.DataFile method), 48
deleteMaskTypes() (clickpoints.DataFile method), 48
deletePaths() (clickpoints.DataFile method), 49
deleteRectangles() (clickpoints.DataFile method), 49
deleteTags() (clickpoints.DataFile method), 50
deleteTracks() (clickpoints.DataFile method), 50

G
getAnnotation() (clickpoints.DataFile method), 50
getAnnotations() (clickpoints.DataFile method), 51
GetCommandLineArgs() (in module clickpoints), 65
getDbVersion() (clickpoints.DataFile method), 51
GetImage() (clickpoints.Commands method), 66
getImage() (clickpoints.DataFile method), 51
getImageIterator() (clickpoints.DataFile method), 51
getImages() (clickpoints.DataFile method), 52
getLine() (clickpoints.DataFile method), 52
getLines() (clickpoints.DataFile method), 53
getMarker() (clickpoints.DataFile method), 53
getMarkers() (clickpoints.DataFile method), 54
getMarkerType() (clickpoints.DataFile method), 53
getMarkerTypes() (clickpoints.DataFile method), 54
getMask() (clickpoints.DataFile method), 54
getMasks() (clickpoints.DataFile method), 55

getMaskType() (clickpoints.DataFile method), 55
getMaskTypes() (clickpoints.DataFile method), 55
getPath() (clickpoints.DataFile method), 56
getPaths() (clickpoints.DataFile method), 56
getRectangle() (clickpoints.DataFile method), 56
getRectangles() (clickpoints.DataFile method), 57
getTag() (clickpoints.DataFile method), 57
getTags() (clickpoints.DataFile method), 57
getTrack() (clickpoints.DataFile method), 58
getTracks() (clickpoints.DataFile method), 58

H
HasTerminateSignal() (clickpoints.Commands method),

66

I
Image (built-in class), 42

J
JumpFrames() (clickpoints.Commands method), 66
JumpFramesWait() (clickpoints.Commands method), 66
JumpToFrame() (clickpoints.Commands method), 67
JumpToFrameWait() (clickpoints.Commands method), 67

L
Line (built-in class), 44
log() (clickpoints.Commands method), 67

M
Marker (built-in class), 43
MarkerType (built-in class), 43
Mask (built-in class), 45
MaskType (built-in class), 45
max_sql_variables() (clickpoints.DataFile method), 58
Meta (built-in class), 41

O
Offset (built-in class), 42

75

clickpoints Documentation, Release 1.1

P
Path (built-in class), 42

R
Rectangle (built-in class), 44
ReloadMarker() (clickpoints.Commands method), 67
ReloadMask() (clickpoints.Commands method), 67
ReloadTypes() (clickpoints.Commands method), 67

S
setAnnotation() (clickpoints.DataFile method), 58
setImage() (clickpoints.DataFile method), 58
setLine() (clickpoints.DataFile method), 59
setLines() (clickpoints.DataFile method), 59
setMarker() (clickpoints.DataFile method), 60
setMarkers() (clickpoints.DataFile method), 61
setMarkerType() (clickpoints.DataFile method), 60
setMask() (clickpoints.DataFile method), 61
setMaskType() (clickpoints.DataFile method), 62
setPath() (clickpoints.DataFile method), 62
setRectangle() (clickpoints.DataFile method), 62
setRectangles() (clickpoints.DataFile method), 63
setTag() (clickpoints.DataFile method), 63
setTrack() (clickpoints.DataFile method), 64

T
Tag (built-in class), 45
TagAssociation (built-in class), 46
Track (built-in class), 43

U
updateHUD() (clickpoints.Commands method), 67

76 Index

	Installation
	Windows
	Linux
	Mac

	General
	Zooming, Panning, Rotating
	Jumping frames
	Interfaces

	Tutorial
	Opening Files and Folders
	Using ConfigFiles
	Manual Tracking
	Taking Measurements

	Modules
	Timeline
	GammaCorrection
	VideoExporter
	Annotations
	Marker
	Mask
	Info Hud

	Add-ons
	Tracking
	Drift Correction
	Cell Detector
	Grab Plot Data

	Examples
	Count Penguins
	Flourescence intensities in plant roots
	Supervised Tracking of Fiducial Markers in Magnetic Tweezer Measurements
	Using ClickPoints for Visualizing Simulation Results

	Database API
	Database Models
	DataFile

	Add-on API
	GetCommandLineArgs
	Commands

	Citing ClickPoints
	Note
	Bibliography

